121787092 huawei lte planning

Upload: -

Post on 09-Feb-2018

338 views

Category:

Documents


31 download

TRANSCRIPT

  • 7/22/2019 121787092 Huawei LTE Planning

    1/192

    Long Term Evolution (LTE)Radio Access Network Planning Guide

  • 7/22/2019 121787092 Huawei LTE Planning

    2/192

    Long Term Evolution (LTE)

    Radio Access Network Planning Guide1 How to Use This Guide ..............................................................................................................................1

    1.1 Introduction ...............................................................................................................................................1

    1.2 General Radio Network Planning Process ....................................................................................................1

    1.3 Quick Guide to Content of Each Section .....................................................................................................2

    2 LTE Fundamentals & Key Technologies .......................................................................................................3

    2.1 Overview of Data Market as a Whole ..........................................................................................................3

    2.2 3GPP Evolution and Market Expectation .....................................................................................................3

    2.3 LTE Modulation Technology Highlight .........................................................................................................4

    2.3.1 OFDM Fundamental .............. .............. .............. .............. .............. .............. .............. .............. .............. .............. ............... ..........5

    2.3.2 SC-FDMA Fundamental ............. .............. .............. ............... .............. .............. .............. .............. .............. .............. .............. ......7

    2.4 LTE Frame Structure ....................................................................................................................................8

    2.5 LTE Resource Block Architecture ..................................................................................................................9

    2.6 Reference Signal Structure ........................................................................................................................10

    2.7 Timing and Sampling Architecture ............................................................................................................11

    2.7.1 Normal and Extended Cyclic Prex ............. .............. .............. .............. .............. .............. .............. .............. ............... .............. .12

    2.7.2 Synchronization Channel .............. .............. .............. .............. .............. .............. .............. .............. .............. ............... .............. .13

    2.8 Uplink Physical Channel Structure .............................................................................................................13

    2.8.1 FDD Uplink Control, Sounding and Demodulation Reference Signal Structure ............................................................................14

    2.9 Multiple Input Multiple Output (MIMO) ....................................................................................................15

    2.9.1 3GPP MIMO Mode Denition ............. .............. .............. .............. .............. .............. ............... .............. .............. .............. .........15

    2.9.2 Open Loop MIMO .............. .............. .............. .............. ............... .............. .............. .............. .............. .............. .............. ...........16

    2.9.3 Closed Loop MIMO ............... .............. .............. .............. .............. .............. .............. .............. .............. .............. ............... ........17

    2.9.4 Pre-coding Matrix .............. .............. .............. .............. ............... .............. .............. .............. .............. .............. .............. ...........18

    2.9.5 Beam Forming .............. ............... .............. .............. .............. .............. .............. .............. .............. .............. ............... .............. .20

    2.10 LTE FDD vs LTE TDD Main Features Comparison ......................................................................................21

    2.11 LTE Channels Hierarchy Overview ............................................................................................................22

    2.11.1 Physical Channel Modulation Schemes .....................................................................................................................................22

    2.11.2 Downlink Channel Functionality Breakdown .............................................................................................................................23

    2.11.3 Uplink Channel Functionality Breakdown .................................................................................................................................23

    2.11.4 Channel Functionality Description in Detail ...............................................................................................................................23

    2.11.5 Downlink Control Channel and RE Mapping Relationship .........................................................................................................25

    2.12 Cell Search, Synchronization & MobilityUE Call Flow View .....................................................................25

    2.12.1 Cell Search and Synchronization ............ .............. ............... .............. .............. .............. .............. .............. .............. .............. ....25

    2.12.2 UE Procedure for Reporting Channel Quality Indication (CQI), Precoding Matrix indicator (PMI) and rank indication (RI) ...........26

    2.12.3 System Information Bit Denition ............. .............. .............. .............. .............. .............. .............. .............. ............... .............. .27

    2.12.4 Mobility Management ............. .............. .............. .............. .............. .............. ............... .............. .............. .............. .............. ....27

  • 7/22/2019 121787092 Huawei LTE Planning

    3/192

    2.12.5 EUTRAN Hierarchy and Interface Overview ...............................................................................................................................27

    2.12.6 Summary of Handover Call Flow 3GPP Example TS36.300 .....................................................................................................28

    2.13 Example of Peak Data Rate Calculation ...................................................................................................29

    3 LTE Frequency and Spectrum Planning .....................................................................................................30 3.1 Frequency Spectrum Overview - FDD ........................................................................................................30

    3.2 Frequency Spectrum Overview - TDD ........................................................................................................30

    3.3 Channel Bandwidth and Subcarrier Allocation ...........................................................................................31

    3.4 Channel Arrangement ...............................................................................................................................32

    3.4.1 Channel Spacing .............. .............. .............. .............. .............. .............. .............. ............... .............. .............. .............. .............32

    3.4.2 Channel Raster ............... .............. .............. .............. .............. .............. .............. .............. .............. .............. ............... .............. .32

    3.4.3 Carrier Frequency and EARFCN ............. .............. ............... .............. .............. .............. .............. .............. .............. .............. .......33

    3.5 Frequency Planning Recommendations .....................................................................................................34

    3.5.1 Conventional Frequency Reuse Scheme 1*3*1 .............. .............. .............. .............. .............. .............. ............... .............. ...........34

    3.5.2 SFR 1*3*1 Downlink and Uplink .............. .............. .............. .............. .............. .............. .............. .............. ............... .............. .35

    3.5.3 TDD Specic Frequency Planning Considerations ........................................................................................................................36

    3.5.4 Frequency Band Selection .............. .............. .............. .............. .............. .............. ............... .............. .............. .............. .............37

    3.5.5 Cyclic Prex Planning .............. .............. .............. .............. .............. .............. ............... .............. .............. .............. .............. ......38

    3.5.6 Placing Multiple Technologies@Multiple Frequency Band ...........................................................................................................38

    4 Link Budget and Coverage Planning .........................................................................................................40

    4.1 Conventional Link Budget .........................................................................................................................41

    4.2 Propagation Parameters ............................................................................................................................42

    4.2.1 Channel Model ............. ............... .............. .............. .............. .............. .............. .............. .............. .............. ............... .............. .42

    4.2.2 3GPP Value for Multipath and Doppler Effect ............. .............. .............. .............. ............... .............. .............. .............. .............43

    4.2.3 Propagation Model ............... .............. .............. .............. .............. .............. .............. .............. .............. .............. ............... ........45

    4.2.4 Penetration Loss .............. ............... .............. .............. .............. .............. .............. .............. .............. .............. .............. ..............50

    4.2.5 Body Loss ............ .............. ............... .............. .............. .............. .............. .............. .............. .............. .............. .............. ............51

    4.2.6 Feeder Loss ............ ............... .............. .............. .............. .............. .............. .............. .............. .............. .............. ............... ........52

    4.2.7 Background Noise .............. .............. .............. .............. ............... .............. .............. .............. .............. .............. .............. ...........53

    4.3 Equipment-Related Parameters .................................................................................................................53

    4.3.1 Transmit Power ............. ............... .............. .............. .............. .............. .............. .............. .............. .............. ............... .............. .53

    4.3.2 Receiver Sensitivity ............. .............. .............. .............. ............... .............. .............. .............. .............. .............. .............. ...........54

    4.3.3 Noise Figure .............. .............. .............. .............. .............. .............. .............. ............... .............. .............. .............. .............. ......54

    4.3.4 Antenna Gain ............. .............. ............... .............. .............. .............. .............. .............. .............. .............. .............. .............. .....54

    4.4 LTE-Related Parameters .............................................................................................................................56

    4.4.1 MIMO Gains ............. .............. .............. .............. .............. .............. .............. ............... .............. .............. .............. .............. ......56

    4.4.2 Cell Edge Rate .............. .............. .............. .............. .............. .............. .............. .............. ............... .............. .............. .............. ...57

    4.4.3 Interference Margin .............. .............. .............. .............. .............. .............. .............. .............. .............. .............. ............... ........59

    4.4.4 Beam Forming .............. ............... .............. .............. .............. .............. .............. .............. .............. .............. ............... .............. .59

    4.5 System Reliability ......................................................................................................................................60

    4.5.1 Slow Fading Margin .............. .............. .............. .............. .............. .............. .............. .............. .............. .............. ............... ........60

    4.5.2 Effect of Earth Curvature .............. .............. .............. .............. .............. .............. .............. .............. .............. ............... .............. .62

    4.5.3 Absence of Fast Fading and Soft Handover Margin ....................................................................................................................62

  • 7/22/2019 121787092 Huawei LTE Planning

    4/192

    4.6 Specic Factors in Link Budget Consideration ............................................................................................62

    4.6.1 Features Overview .............. .............. .............. ............... .............. .............. .............. .............. .............. .............. .............. ...........62

    4.6.2 TTI Bundling .............. .............. .............. .............. .............. ............... .............. .............. .............. .............. .............. .............. ......63

    4.6.3 Interference Rejection Combining .............. .............. .............. .............. .............. .............. .............. .............. ............... .............. .63

    4.6.4 Reference Signal Power Boosting Gain .............. .............. .............. .............. .............. .............. .............. .............. ............... ........65

    4.6.5 Remote Radio Unit and eNodeB Portfolio .............. .............. .............. .............. .............. ............... .............. .............. .............. ....65

    4.7 Summary of Variables inside Link Budget Tools .........................................................................................65

    5 Interference and Guard Band Analysis ......................................................................................................69

    5.1 Overview ..................................................................................................................................................69

    5.1.1 Basic Concepts .............. ............... .............. .............. .............. .............. .............. .............. .............. .............. ............... .............. .69

    5.1.2 Analysis of Background Noise ............. .............. .............. .............. .............. .............. .............. .............. .............. ............... ........73

    5.1.3 Impact of Interference .............. .............. .............. ............... .............. .............. .............. .............. .............. .............. .............. ....74

    5.2 Interference Between TDD Systems ...........................................................................................................75

    5.2.1 Interference between Different Carriers ......................................................................................................................................75

    5.2.2 Interference within the Same Carrier .............. .............. ............... .............. .............. .............. .............. .............. .............. ...........76

    5.2.3 Theoretical Analysis of Interference under Site Sharing ...............................................................................................................77

    5.2.4 Theoretical Analysis of Interference: Non Colocated eNodeB .....................................................................................................78

    5.3 Guard Band Requirement: LTE-FDD vs GSM/UMTS ....................................................................................79

    5.4 GuardBand Requirement: LTE FDD vs LTE TDD ..........................................................................................79

    5.5 Spectrum Refarming for LTE ......................................................................................................................80

    5.5.1 Summary ............. .............. .............. .............. .............. ............... .............. .............. .............. .............. .............. .............. ...........80

    5.5.2 GSM Spectrum Refarming .............. .............. .............. .............. .............. .............. ............... .............. .............. .............. .............80

    5.5.3 Introduction of Buffer Zone ............. .............. ............... .............. .............. .............. .............. .............. .............. .............. ............81

    5.6 Radio Access Technologies Co-location Strategies .....................................................................................82

    5.6.1 Overview ............. .............. .............. .............. .............. ............... .............. .............. .............. .............. .............. .............. ...........82

    5.6.2 GSM-LTE Co-Location Examples .............. .............. ............... .............. .............. .............. .............. .............. .............. .............. ....82

    5.6.3 LTE TDD and WiMAX Systems Co-Location ............... .............. .............. .............. .............. .............. .............. .............. .............. ..87

    6 LTE Access Network Capacity Planning .....................................................................................................89

    6.1 Denition of Capacity ...............................................................................................................................89

    6.2 3GPP Services Classication ......................................................................................................................91

    6.3 EUTRAN Capacity Limiting Factors ............................................................................................................91

    6.3.1 Operating Frequency Band ............. .............. .............. .............. .............. .............. ............... .............. .............. .............. .............92

    6.3.2 RF coverage - RSRP ............... .............. .............. .............. .............. .............. .............. .............. .............. .............. ............... ........93

    6.3.3 Impact of Interference on Capacity .............. .............. .............. .............. .............. ............... .............. .............. .............. .............93

    6.3.4 Signal Interference Noise Ratio and Adaptive Coding .................................................................................................................94

    6.3.5 Radio (Transmitter) Power Availability ............. .............. ............... .............. .............. .............. .............. .............. .............. ...........94

    6.3.6 Spectrum Bandwidth Availability ............. .............. ............... .............. .............. .............. .............. .............. .............. .............. ....94

    6.3.7 Base Band Channel Card Processing Capacity ............. .............. .............. .............. ............... .............. .............. .............. .............94

    6.3.8 S1/X2 Capacity . .............. .............. .............. .............. .............. .............. ............... .............. .............. .............. .............. .............. .94

    6.3.9 Application of Special Antenna Technologies (MIMO/BF/V MIMO) ................. ................ ................. ................ ................. ...........94

    6.3.10 Scheduling Mode ............. .............. .............. .............. ............... .............. .............. .............. .............. .............. .............. ...........95

    6.3.11 Actual Cell Site Placement in Relation to Trafc ........................................................................................................................96

  • 7/22/2019 121787092 Huawei LTE Planning

    5/192

    6.3.12 UE Capability ............ .............. ............... .............. .............. .............. .............. .............. .............. .............. .............. .............. .....96

    6.3.13 User Trafc Mix and Call Modelling .............. .............. ............... .............. .............. .............. .............. .............. .............. ...........97

    6.3.14 Time Slot Allocation for Uplink and Downlink TDD specic ....................................................................................................97

    6.3.15 Cyclical Prex Allocation ............ ............... .............. .............. .............. .............. .............. .............. .............. .............. .............. ..98

    6.4 S1 Bandwidth Dimensioning Procedure .....................................................................................................98

    6.5 X2 Bandwidth Dimensioning Procedure ....................................................................................................99

    6.6 Impact of Latency of X2 on Cell Throughput ...........................................................................................100

    6.7 Inter Radio Access Technology Handover Considerations ........................................................................100

    7 U-Net Simulation and Operation ............................................................................................................103

    7.1 Introduction ............................................................................................................................................103

    7.2 Simulation Process ..................................................................................................................................103

    7.3 Creating Project ......................................................................................................................................104

    7.4 Geographical Information .......................................................................................................................104

    7.4.1 Quick Import Function .............. .............. .............. ............... .............. .............. .............. .............. .............. .............. .............. ..104

    7.4.2 Dening Coordinate Systems ............. .............. .............. .............. .............. .............. .............. ............... .............. .............. ........105

    7.4.3 Properties of Clutter Class .............. .............. .............. .............. .............. .............. ............... .............. .............. .............. ...........106

    7.5 Equipment Parameter .............................................................................................................................107

    7.5.1 Overview ............. .............. .............. .............. .............. ............... .............. .............. .............. .............. .............. .............. .........107

    7.5.2 Network Settings ............. .............. .............. .............. .............. .............. .............. ............... .............. .............. .............. ...........107

    7.5.3 Equipment ............. ............... .............. .............. .............. .............. .............. .............. .............. .............. .............. ............... ......113

    7.5.4 Site, Cell and Transmitter Listing ............. .............. ............... .............. .............. .............. .............. .............. .............. .............. ..113

    7.5.5 Viewing Hidden Parameters ............. .............. .............. .............. .............. .............. .............. .............. .............. ............... ......115

    7.5.6 Propagation Model Selection .............. .............. .............. .............. .............. .............. .............. .............. .............. ............... ......115

    7.5.7 Clutter Related Modelling .............. .............. .............. .............. .............. .............. ............... .............. .............. .............. ...........118

    7.5.8 Impact of Parameter Setting on Prediction and Simulation .......................................................................................................118

    7.6 Engineering Parameter ............................................................................................................................119

    7.6.1 Power Setting ............. .............. .............. .............. ............... .............. .............. .............. .............. .............. .............. .............. ..119

    7.6.2 Load Setting ............. .............. .............. .............. .............. .............. .............. ............... .............. .............. .............. .............. ....121

    7.6.3 Frequency Planning ............... .............. .............. .............. .............. .............. .............. .............. .............. .............. ............... ......122

    7.6.4 Scheduling Parameters .............. .............. .............. ............... .............. .............. .............. .............. .............. .............. .............. ..125

    7.6.5 Antenna Property ............ ............... .............. .............. .............. .............. .............. .............. .............. .............. ............... ...........126

    7.6.6 Properties of a Single Transmitter ............ .............. ............... .............. .............. .............. .............. .............. .............. .............. ..128

    7.6.7 Properties of a eNodeB Template ............ .............. ............... .............. .............. .............. .............. .............. .............. .............. ..130

    7.7 LTE Trafc Model Parameters ..................................................................................................................132

    7.7.1 Overview ............. .............. .............. .............. .............. ............... .............. .............. .............. .............. .............. .............. .........132

    7.7.2 Environments .............. .............. .............. .............. ............... .............. .............. .............. .............. .............. .............. .............. ..132

    7.7.3 User Proles .............. .............. .............. .............. .............. .............. .............. ............... .............. .............. .............. .............. ....133

    7.7.4 Terminals ............. .............. .............. .............. .............. ............... .............. .............. .............. .............. .............. .............. .........134

    7.7.5 Mobility Types ............... ............... .............. .............. .............. .............. .............. .............. .............. .............. ............... .............135

    7.7.6 Services .............. ............... .............. .............. .............. .............. .............. .............. .............. .............. .............. ............... ..........136

    7.7.7 Trafc Map ............ ............... .............. .............. .............. .............. .............. .............. .............. .............. .............. ............... ......137

    7.8 Prediction and Simulation .......................................................................................................................141

    7.8.1 Predictions ............. ............... .............. .............. .............. .............. .............. .............. .............. .............. .............. ............... ......141

  • 7/22/2019 121787092 Huawei LTE Planning

    6/192

    7.8.2 Simulation .............. .............. .............. ............... .............. .............. .............. .............. .............. .............. .............. .............. .......145

    7.9 Point Analysis Tool ..................................................................................................................................151

    7.9.1 Prole ............. .............. ............... .............. .............. .............. .............. .............. .............. .............. .............. ............... .............151

    7.9.2 Reception .............. ............... .............. .............. .............. .............. .............. .............. .............. .............. .............. ............... ......151

    7.9.3 Signal Analysis .............. ............... .............. .............. .............. .............. .............. .............. .............. .............. ............... .............152

    7.9.4 Result ............. .............. ............... .............. .............. .............. .............. .............. .............. .............. .............. ............... .............152

    7.10 RF Cell Planning Optimization ...............................................................................................................152

    7.11 U-Net Planning Case .............................................................................................................................154

    7.11.1 Overview of Planning Area ............. .............. .............. ............... .............. .............. .............. .............. .............. .............. .........154

    7.11.2 Site Distribution ............. .............. .............. .............. .............. .............. .............. ............... .............. .............. .............. ...........155

    7.11.3 Parameter Conguration and General Assumption ............. .............. .............. .............. .............. .............. .............. .............. ..156

    7.11.4 Network Coverage Predictions .............. .............. ............... .............. .............. .............. .............. .............. .............. .............. ..157

    7.11.5 Network Capacity Simulation .............. .............. .............. .............. .............. ............... .............. .............. .............. .............. ....160

    8 LTE Network Key Performance Indicators ...............................................................................................163

    8.1 KPI Measurement Methodology ..............................................................................................................163

    8.2 KPI Acceptance Procedure ......................................................................................................................163

    8.3 Service KPIs and Network KPIs ................................................................................................................164

    8.4 Cluster and Test Route ............................................................................................................................164

    8.5 Proposed Key Performance Indicators .....................................................................................................165

    8.6 Proposed KPIs for Final Acceptance (Stability Acceptance, Optional) .......................................................165

    9 Network Planning Checklist ...................................................................................................................166

    9.1 Introduction ............................................................................................................................................166

    9.2 Checklist Items Consideration .................................................................................................................166

    9.2.1 Understanding Customer Spectrum Bandwidth Availability .......................................................................................................166

    9.2.2 Actual Frequency Band Allocation for LTE .............. .............. ............... .............. .............. .............. .............. .............. .............. ..166

    9.2.3 Frequency Band Refarming Requirement for LTE ............. .............. .............. .............. .............. .............. .............. ............... ......167

    9.2.4 Location of Customer Coverage Requirement .............. .............. .............. .............. .............. .............. ............... .............. ..........167

    9.2.5 Highway and Tunnel Coverage Requirement .............. .............. .............. .............. ............... .............. .............. .............. ...........168

    9.2.6 Evaluate Existing Network Condition for InterRAT ............. .............. .............. ............... .............. .............. .............. .............. ....168

    9.2.7 Terrain and Clutter Database Availability and Accuracy .............................................................................................................168

    9.2.8 Scheduler Selection ............... .............. .............. .............. .............. .............. .............. .............. .............. .............. ............... ......169

    9.2.9 Indoor Coverage Requirement .............. .............. .............. .............. .............. ............... .............. .............. .............. .............. ....169

    9.2.10 Cell Edge Throughput Requirement .............. .............. ............... .............. .............. .............. .............. .............. .............. .........169

    9.2.11 Call Model and SmartPhone Penetration Growth Considerations ............................................................................................169

    9.2.12 Base Station Antenna and Other Co-siting Equipment Selection .............................................................................................170

    9.2.13 Interference Protection and Isolation Requirement .................................................................................................................170

    9.2.14 Radio Related Equipment Selection .............. .............. ............... .............. .............. .............. .............. .............. .............. .........171

    9.2.15 Network and Spectrum Evolution Consideration ....................................................................................................................171

    9.2.16 MIMO and Beam Forming Implementation .............. .............. .............. .............. ............... .............. .............. .............. ...........171

    9.2.17 Cyclic Prex Planning .............. .............. .............. ............... .............. .............. .............. .............. .............. .............. .............. ..171

    9.2.18 Understanding of Current Transmission Backhaul Network Capability .....................................................................................172

    9.2.19 UE Distribution and Channel Model : Pedestrian vs High Mobility ...........................................................................................172

  • 7/22/2019 121787092 Huawei LTE Planning

    7/192

    9.2.20 TDD Specic Uplink and Downlink Conguration ............... .............. .............. .............. .............. .............. .............. .............. ..172

    9.2.21 Power Boosting Conguration .............. .............. ............... .............. .............. .............. .............. .............. .............. .............. ..172

    10 Appendix: RF Antenna Systems ..............................................................................................................174

    10.1 Overview ..............................................................................................................................................174 10.2 Antenna Classication ..........................................................................................................................174

    10.2.1 Frequency ............ ............... .............. .............. .............. .............. .............. .............. .............. .............. .............. ............... ......174

    10.2.2 Directivity .............. ............... .............. .............. .............. .............. .............. .............. .............. .............. .............. ............... .....174

    10.3 Main Specications of Antenna ............................................................................................................174

    10.3.1 Work Band .............. .............. .............. .............. .............. .............. .............. ............... .............. .............. .............. .............. ....175

    10.3.2 Antenna Gain .............. .............. .............. .............. .............. .............. .............. .............. ............... .............. .............. ..............175

    10.3.3 Antenna Pattern .............. .............. .............. .............. .............. .............. .............. .............. ............... .............. .............. ..........176

    10.3.4 Beamwidth ............. .............. .............. .............. .............. .............. .............. ............... .............. .............. .............. .............. ....177

    10.3.5 Relation between Beamwidth and Gain .................................................................................................................................177

    10.3.6 Front-to-rear Ratio .............. .............. .............. .............. .............. .............. .............. .............. .............. .............. ............... ......178

    10.3.7 Upper Side Lobe Suppression .............. .............. .............. .............. .............. ............... .............. .............. .............. .............. ....178

    10.3.8 Polarization Mode ............... .............. .............. .............. .............. .............. .............. .............. .............. .............. ............... ......179

    10.3.9 Down Tilt ............. ............... .............. .............. .............. .............. .............. .............. .............. .............. .............. ............... ......179

    10.3.10 VSWR (Voltage Standing Wave Ratio) ............. ............... .............. .............. ............... .............. .............. ............... .............. ...179

    10.3.11 Port Isolation ............ ............... .............. .............. .............. .............. .............. .............. .............. .............. ............... .............180

    10.3.12 Power Capacity .............. .............. .............. .............. ............... .............. .............. .............. .............. .............. .............. .........180

    10.3.13 Input Port of Antenna .............. .............. .............. .............. .............. .............. .............. .............. .............. ............... .............180

    10.3.14 Passive Intermodulation (PIM) ............. .............. ............... .............. .............. .............. .............. .............. .............. .............. ..180

    10.3.15 Dimensions and Weight of Antenna .............. .............. .............. .............. .............. .............. .............. .............. .............. .......181

    10.3.16 Wind Load .............. .............. .............. .............. ............... .............. .............. .............. .............. .............. .............. .............. ..181

    10.3.17 Work Temperature and Humidity ............. .............. .............. .............. .............. ............... .............. .............. .............. ...........181

    10.3.18 Lightning Protection .. .............. .............. .............. .............. .............. .............. .............. ............... .............. .............. ..............181

    10.3.19 Three-proof Capability ............. .............. .............. .............. .............. .............. .............. ............... .............. .............. ..............181

    10.3.20 Camouaged Antenna Scheme for Sites ............. .............. .............. .............. .............. .............. .............. .............. .............. ..181

    10.3.21 Customized Camouage .............. .............. .............. ............... .............. .............. .............. .............. .............. .............. .........182

    10.3.22 Outlook Camouage ............. .............. .............. ............... .............. .............. .............. .............. .............. .............. .............. ..183

    10.3.23 Antenna Camouage in Special Environment .......................................................................................................................183

    11 References ...........................................................................................................................................184

  • 7/22/2019 121787092 Huawei LTE Planning

    8/192

    1

    1.1 Introduction

    The purpose of this document is to provide systems engineers/planners with a set of guidelines and introductions to

    LTE deployment planning that may aid the design of a high quality Long Term Evolution (LTE) RF System. In general,

    most of the content provided in this planning guide can be applied to LTE system design with eld implementation

    considerations. Specic RF planning information unique to Huaweis LTE EUTRAN product is also provided.

    Although there are numerous and detailed references made to particular tools, it is not the purpose of this planning

    document to replace any product and tools' operating manual/instruction. Please refer to the ofcial publications of

    the respective product/tool for their most up to date functionality.

    1.2 General Radio Network Planning Process

    The flow diagram below shows one of the more common work procedures recommended by the Radio network

    planning team. It covers all the major area that requires technical attention from the conceptual beginning of a

    network design to the provisioning of nal network parameters required for the deployment phases.

    1 How to Use This Guide

  • 7/22/2019 121787092 Huawei LTE Planning

    9/192

    2

    1.3 Quick Guide to Content of Each Section

    The LTE RF Planning Guide is a collection of fairly independent chapters covering various aspects of LTE system RF

    design and implementation. The table below outlines the key features of each Chapter.

    Chapter # Chapter Title Detailed Description

    1 How to Use this Guide Understand the contents of this document.

    2LTE Fundamentals &

    Key Technologies

    Learn LTE fundamental which includes PHY and MAC layer technology.

    Meanwhile, some key LTE technologies such as MIMO and FFR will be presented

    in this section.

    3Frequency and

    Spectrum Planning

    Overview of LTE Spectrum denition as in 3GPP. Understanding the various reuse

    options available to LTE as well as band selection and combination overview

    4Link Budget and

    Coverage Planning

    Understand the parameters that comprise the LTE RF Link Budget. Learn aboutsome of the basic propagation models as well as critical features that affect link

    budget values.

    5

    Interference, Guard

    band and Refarming

    Analysis

    Understand some basic concept for interference analyze such as ACS, ACLR, etc.

    Learn different interference between two different systems among serials TDD

    and FDD system.

    6LTE Access Network

    Capacity Planning

    Overview of LTE capacity planning as well as highlight all the critical factors and

    considerations that will affect capacity for an LTE network.

    7U-Net Simulation and

    Operation

    Understand U-Net operations. Learn denition of different parameters such as

    equipment parameters, engineering parameters, trafc model parameters, etc.

    High level view on how to predict and simulate based on U-Net.

    8

    LTE Network Key

    Performance

    Indicators

    Provide LTE KPIs classication and KPI Acceptance Procedure

    9Network Planning

    Checklist

    Provide a list of items that Planning engineers need to consider and ideally have

    answers from customer before performing any detail planning.

    Table 1-1Quick Guide

  • 7/22/2019 121787092 Huawei LTE Planning

    10/192

    3

    2 LTE Fundamentals & Key Technologies

    2.1 Overview of Data Market as a Whole

    Challenges: Limited Investment but 500x Capacity Increment

    2.2 3GPP Evolution and Market Expectation

    Source: Global mobile Suppliers Association October 2010

  • 7/22/2019 121787092 Huawei LTE Planning

    11/192

    4

    2.3 LTE Modulation Technology Highlight

    In Nov. 2004, 3GPP began a project to dene the long-term evolution (LTE) of Universal Mobile Telecommunications

    System (UMTS) cellular technology. The main goal is to provide

    Higher throughput performance

    100 Mbit/s peak downlink, 50 Mbit/s peak uplink

    1G for LTE Advanced

    Higher cell edge performance

    Reduced latency in setup time. Shorter transfer delay, shorter handover latency and interruption time for better

    user experience

    Support of variable and scalable bandwidth (1.4, 3, 5, 10, 15 and 20 MHz)

    Backwards compatible with Existing 3G technologies

    Works with GSM/EDGE/UMTS systems

    Utilizes existing 2G and 3G spectrum and new spectrum

    Supports hand-over and roaming to existing mobile networks

    Quality of Service Support.

    Wide application

    TDD (unpaired) and FDD (paired) spectrum modes

    Mobility up to 450km/h

    Large range of terminals (phones and PCs to cameras)

    LTE employs Orthogonal Frequency Division Multiple Access (OFDMA) for downlink data transmission and SingleCarrier FDMA (SC-FDMA) for uplink transmission.

    It is also important to remember that LTE systems operate in two separate domains, namely time and frequency as

    shown in the gure below for downlink.

  • 7/22/2019 121787092 Huawei LTE Planning

    12/192

    5

    Figure below is the LTE uplink allocation structure from a time and frequency perspective.

    2.3.1 OFDM Fundamental

    OFDM was selected for the downlink because it can

    Improved spectral efciency

    Reduce ISI effect by multipath

    Provide better Protection against frequency selective fading

    OFDM is a scheme that offers good resistance to multipath and is now widely recognized as the method of choice

    for mitigating multipath for broadband wireless. It can be straightforwardly extended to a multi-access scheme called

    OFDMA, where each user is assigned a different set of subcarriers.

    I. Frequency Spectral Efciency Improvement

    OFDM increases spectral efciency by incorporating multiple carriers in the same frequency space as a single carrier.

  • 7/22/2019 121787092 Huawei LTE Planning

    13/192

    6

    II. Reducing the Impact by Inter Symbol Interference (ISI)

    Improvement of frequency spectral efciency requires the reduction of Inter symbol interference (ISI). This is achieved

    by tighter frequency roll off and alignment of nulls and peaks between different frequencies.

    III. Better Protection Against Frequency Fading

    Smaller subcarrier and resource block bandwidth increase robustness against frequency related fading

    With this smaller carrier bandwidth, the frequency coherence bandwidth is much smaller than 3G systems while and

    correlation factor is much higher. As a result, it will also be much easier to implement scheduling algorithm based on

    Frequency Selective Scheduling to improve system throughput in the manner shown below.

  • 7/22/2019 121787092 Huawei LTE Planning

    14/192

    7

    2.3.2 SC-FDMA Fundamental

    Single Carrier-FDMA is a recently developed single carrier multiple access technique which has similar structure and

    performance to OFDMA. SC-FDMA can be viewed as a special OFDMA system with the users signal pre-encoded by

    discrete Fourier transform (DFT), hence also known as DFT-pre-coded OFDMA or DFT-spread OFDMA. One prominent

    advantage of SC-FDMA over OFDMA is the lower PAPR (peak-to-average power ratio) of the transmit waveform for low-

    order modulations like QPSK and BPSK, which benets the mobile users in terms of battery life and power efciency.

    OFDM signals have a higher peak-to-average ratio (PAR)often called a peak-to-average power ratio (PAPR)than

    single-carrier signals do. The reason is that in the time domain, a multicarrier signal is the sum of many narrowband

    signals. At some time instances, this sum is large and at other times is small, which means that the peak value of

    Frequency Selective Fading Resistance

  • 7/22/2019 121787092 Huawei LTE Planning

    15/192

    8

    the signal is substantially larger than the average value. This high PAR is one of the most important implementation

    challenges that face OFDM, because it reduces the efciency and hence increases the cost of the RF power amplier,

    which is one of the most expensive components in the radio. The gure below shows the relationship between OFDM

    and SC-FDMA in LTE.

    The major difference between the downlink and uplink transmission scheme is that each subcarrier in the uplink carries

    information about each transmitted modulation symbol as shown in gure below, whereas in downlink each subcarrier

    only carries information related to one specic modulation symbol. As a result, the uplink power level due to SC-FDMA

    also need to be increased by 2~3dB to compensate for the extra noise due to more spreading.

    2.4 LTE Frame Structure

    The gure below shows the frame structure for LTE under Time division mode (TDD) Type 2 and Frequency Division

    mode (FDD) Type 1. Main differences between the two modes are

    Frame 0 and frame 5 (always downlink in TDD)

    Frame 1 and frame 6 is always used as for synchronization in TDD

    Frame allocation for Uplink and Downlink is settable in TDD

    The sampling rate in both FDD and TDD is the same and both technologies operate under a 1-ms sub-frame (TTI-

    Transmission Time Interval) and 0.5us timeslot denition.

    The rst 3 congurations (0-2) for TDD can also be viewed as 5ms allocation due to repetition. The gure below shows

    a detailed relationship between rates and frame structure.

  • 7/22/2019 121787092 Huawei LTE Planning

    16/192

    9

    2.5 LTE Resource Block Architecture

    The building block of LTE is a physical resource block (PRB) and all of the allocation of physical resource blocks (PRBs) is

    handled by a scheduling function at the 3GPP base station (eNodeB). In summary,

    One frame is 10ms and it consists of 10 sub-frames

    One subframe is 1ms and contains 2 slots

    One slot is 0.5ms in time domain and each 0.5ms assignment can contain N resource blocks [6 < N < 110]

    depending on the bandwidth allocation and resource availability.

    One resource block is 0.5ms and contains 12 subcarriers for each OFDM symbol in frequency domain.

    There are 7 symbols (normal cyclic prex) per time slot in the time domain or 6 symbols in long cyclic prex.

    Resource element is the smallest unit of resource assignment and its relationship to resource block is shown as below

    from both a timing and frequency perspective.

  • 7/22/2019 121787092 Huawei LTE Planning

    17/192

    10

    2.6 Reference Signal Structure

    Reference signal is the UMTS Pilot equivalent and it is used by UE to predict the likely coverage condition on offer for

    each of the eNodeB cell received. The gure below shows the locations of the reference signal within each sub-frame

    when transmit antennae are used by the cell.

  • 7/22/2019 121787092 Huawei LTE Planning

    18/192

    11

    As LTE is a MIMO based technology, it can have more than two transmit antennae and in order to avoid reference

    signals from the same cell interfering with each other, different antennae will be transmitting reference signal at

    different time and frequency and how these are allocated are shown below.

    As defined in the standard for TDD operations, the channel-sounding mechanism involves the UEs transmitting adeterministic signal that can be used by the eNodeB to estimate the UL channel from the UE. If the UL and DL channels are

    properly calibrated, the eNodeB can then use the UL channel as an estimate of the DL channel, due to channel reciprocity.

    2.7 Timing and Sampling Architecture

    Sampling frequency varies under different bandwidth conguration in LTE and the table below summarizes the possible

    combinations.

    A quick summary of all the physical layer information for LTE is shown below.

  • 7/22/2019 121787092 Huawei LTE Planning

    19/192

    12

    2.7.1 Normal and Extended Cyclic Prex

    The key to making OFDM realizable in practice is the use of the FFT algorithm, which has low complexity. In order for

    the IFFT/FFT to create an ISI-free channel, the channel must appear to provide a circular convolution. Adding cyclic

    prex to the transmitted signal to create a signal that appears to be just like circular convolution and this is done by

    copying the last part of each OFDM symbol to the front of each symbol with the length of a guard interval, to form a

    cyclic prex (CP).

    Also, to prevent the guard interval from destroying the inter-sub-carrier orthogonality, the delay of each path should

    not exceed the guard interval where the number of waveforms within the integral time of the FFT is an integer

    The cyclic prex, although elegant and simple, is not entirely free. It comes with both a bandwidth and power penalty.

    Since redundant symbols are sent, the required bandwidth for OFDM also increases. Similarly, an additional symbol

    must be counted against the transmit-power budget. Hence, the cyclic prex carries a power penalty of v dB in addition

    to the bandwidth penalty. In summary, the use of the cyclic prex entails data rate and power losses. The wasted

    power has increased importance in an interference-limited wireless system, causing interference to neighboring users.

  • 7/22/2019 121787092 Huawei LTE Planning

    20/192

    13

    Where L is the power used for non CP transmission. In the case where there is a large delay spread, e.g. due to large

    cell radius, an extended CP option can be used.

    2.7.2 Synchronization Channel

    The diagram below shows the relative position of Primary Synchronization (PSS) and Secondary Synchronization (SSS)

    within the radio frame in a FDD LTE system.

    The gure below shows the location of PSS and SSS in LTE-TDD and the major difference from LTE FDD is that LTE TDD

    embedding the Primary Sync channel in the DwPTS so the location will not be affected by different DL/UL combination

    ratio

    2.8 Uplink Physical Channel Structure

    It is worth mentioning the physical structure of uplink channel. One uplink Slot is as below.

  • 7/22/2019 121787092 Huawei LTE Planning

    21/192

    14

    2.8.1 FDD Uplink Control, Sounding and Demodulation Reference Signal Structure

    The gure below shows the relative position of uplink control channels in the frequency domain in relation to the

    entire channel bandwidth. In summary,

    1) PUCCH resources are located at the edges of the spectrum

    To maximize frequency diversity

    2) Multiple UEs can share the same PUCCH resource block

    3) PUCCH is never transmitted simultaneously with PUSCH from the same UE

    4) Two consecutive PUCCH slots in Time-Frequency Hopping at the slot boundary

  • 7/22/2019 121787092 Huawei LTE Planning

    22/192

    15

    The Figure below shows respective position of the uplink demodulation reference signal in FDD LTE uplink frame

    structure including sounding reference signal position.

    For LTE TDD only, SRSs can be transmitted in an ordinary sub-frame or in UpPTS sub-frame to improve spectral

    efciency. Normally, it uses UpPTS sub-frame.

    2.9 Multiple Input Multiple Output (MIMO)

    MIMO and other transmit spatial diversity scheme is a newer application than receive diversity and has become widely

    implemented only in the early 2000s. As the signals sent from different transmit antennas interfere with one another,

    processing is required at both the transmitter and the receiver in order to achieve gain while removing or at leastattenuating the spatial interference. By using multiple antenna to transmit multiple path of information to UEs, either

    better throughput or lower SINR requirement can be achieved and the frequency selective characteristics of LTE is

    perfect for the implementation of such technologies. In general there are two mode of MIMO, open and closed loop.

    Additionally, if the multiple antennae are already at the base station for uplink receive diversity, the incremental cost of

    using them for transmit diversity is very low. Multiple antennae transmit schemesboth transmit diversity and spatial

    multiplexingare often categorized as either open loop or closed loop. A high level signal processing diagram is

    shown below.

    2.9.1 3GPP MIMO Mode Denition

    The table below shows the 8 denition used by 3GPP for MIMO modes

  • 7/22/2019 121787092 Huawei LTE Planning

    23/192

    16

    2.9.2 Open Loop MIMO

    Open-loop systems do not require knowledge of the channel at the transmitter. As a result, open loop operations

    occur when the access network does not have information or feedback from the UE to do coding adjustment or signal

    is not good enough.

    The gure below shows a possible N Antennae + M input layers setup in spatial multiplexing

  • 7/22/2019 121787092 Huawei LTE Planning

    24/192

    17

    2.9.3 Closed Loop MIMO

    On the contrary, closed-loop systems require channel knowledge at the transmitter, thus necessitating either channel

    reciprocitysame uplink and downlink channel, possible in TDDor more commonly a feedback channel from the

    receiver to the transmitter. Hence, unlike open loop, closed loop operations occur when the access network executedynamic adjustment based on feedback from the UE. The gure below shows a functional view of closed loop MIMO.

    As a result, a more accurate coding application can be applied to the communication with the UE. The gure below

    shows where the pre-coding function may exist in a N Antennae with M input layers

    In mode 5 (Multi-user MIMO), different UEs are receiving downlink data from different antenna. As a result, the overall

    throughput per cell is increased.

  • 7/22/2019 121787092 Huawei LTE Planning

    25/192

    18

    2.9.4 Pre-coding Matrix

    3GPP 36-211 defines the types of matrix need to be used when multiple antennae are to be used for different

    conditions. The following is a quick summary of some possible pre-coding matrix combination under different

    scenarios

    I. Spatial Multiplexing Matrix Using Two Antenna Ports with Cell-Specic Reference Signals

    Spatial multiplexing is where multiple independent streams are transmitted across multiple antennas. If the receiver

    also has multiple antennas, the streams can be separated out using spatial multiplexing. Instead of increasing

    diversity, multiple antennas in this case are used to increase the data rate or capacity of the system. In a rich multipath

    environment, the capacity of the system can theoretically be increased linearly with the number of antennas when

    performing spatial multiplexing.

    Even two appropriately spaced antennas appear to be sufficient to eliminate most deep fades, which paints a

    promising picture for the potential benefits of spatial diversity. One main advantage of spatial diversity relative to

    time and frequency diversity is that no additional bandwidth or power is needed in order to take advantage of spatial

    diversity. The cost of each additional antenna, its RF chain, and the associated signal processing required to modulate

    or demodulate multiple spatial streams may not be negligible, but this trade-off is often very attractive for a small

    number of antennas,

    However, unlike transmit diversity and beam-forming, spatial multiplexing works mainly under good SINR conditions.

    A 2 2 MIMO system doubles the peak throughput capability of LTE but this is unlikely to be possible for all users in

    the cell due to variation in SINR.The capacity, or maximum data rate, grows as when the SINR is large. When the SNR

    is high, spatial multiplexing is optimal. On the other hand, when the SINR is low, the capacity maximizing strategy is to

    send a single stream of data, using diversity pre-coding. Although capacity gain is much smaller than at high SINR, the

    capacity still grows approximately linearly with since capacity is linear with SINR in the low-SINR regime.

    If the mobile station has only one antenna, LTE can still support spatial multiplexing by coding across multiple users in

    the uplink. This is called Multi-User MIMO (MU-MIMO).

    The matrix used for two antennae spatial multiplexing is shown below.

  • 7/22/2019 121787092 Huawei LTE Planning

    26/192

    19

    II. Transmit Diversity Matrix Using Two Antenna Ports

    The following matrix applies to input x is and y is the resulting output using a two antenna output conguration.

    III. Spatial Multiplexing Matrix Using Four Antenna Ports with Cell-Specic Reference Signals

  • 7/22/2019 121787092 Huawei LTE Planning

    27/192

    20

    IV. Transmit Diversity Matrix Using Four Antenna Ports

    The following matrix applies to input x is and y is the resulting output under a four antenna output conguration.

    2.9.5 Beam Forming

    Multiple antennas in LTE may also be used to transmit the same signal appropriately weighted for each antenna

    element such that the effect is to focus the transmitted beam in the direction of the receiver and away from

    interference, thereby improving the received SINR. The beam-forming weight vector should increase the antenna gain

    in the direction of the desired user while simultaneously minimizing the gain in the directions of interferers. Beam-forming can provide signicant improvement in the coverage range, capacity, and reliability. To perform transmit beam-

    forming, the transmitter needs to have accurate knowledge of the channel, which in the case of TDD is easily available

    owing to channel reciprocity but for FDD requires a feedback channel to learn the channel characteristics so it is not

    implemented in LTE Release 8 or 9 yet. As of today, beam forming is specic only to LTE TDD and can operate either

    under 4x4 or 8x2 congurations.

  • 7/22/2019 121787092 Huawei LTE Planning

    28/192

    21

    One popular beam-forming algorithm is based on Direction of Arrival where the incoming signals to a receiver may

    consist of desired energy and interference energyfor example, from other users or from multipath reections. The

    various signals can be characterized in terms of the DOA or the angle of arrival (AOA) of each received signal. Each

    DOA can be estimated by using EUTRAN signal-processing techniques as requested in 3GPP-TS 36-214. From these

    acquired DOAs, a beam-former extracts a weighting vector for the antenna elements and uses it to transmit or receive

    the desired signal of a specic user while suppressing the undesired interference signals.

    Ideally, the beam-former has unity gain for the desired user and two nulls at the directions of two interferers and can

    place nulls in the directions of interferers. The DOA-based beam-former in this case is often called the null-steering

    beam-former. The null-steering beam-former can be designed to completely cancel out interfering signals only if the

    number of such signals is strictly less than the number of antenna elements.

    Typically, there exists a trade-off between interference null and desired gain lost. Thus far, we have assumed that the

    array response vectors of different users with corresponding AOAs are known. In practice, each resolvable multipath

    is likely to comprise several unresolved components coming from signicantly different angles. In this case, it is not

    possible to associate a discrete AOA with a signal impinging the antenna array. Therefore, the DOA based beam-former

    is viable only in LOS environments or in environments with limited local scattering around the transmitter.

    2.10 LTE FDD vs LTE TDD Main Features Comparison

    The following table summarizes the major similarity between LTE FDD and LTE TDD

    The table below summarizes the difference between the two technologies.

  • 7/22/2019 121787092 Huawei LTE Planning

    29/192

    22

    2.11 LTE Channels Hierarchy Overview

    2.11.1 Physical Channel Modulation Schemes

    Supported modulation schemes in LTE are: QPSK, 16QAM, 64QAM. Maximum information block size = 6144 bits and

    CRC-24 is used for error detection. Broadcast channel only uses QPSK and are shown below.

  • 7/22/2019 121787092 Huawei LTE Planning

    30/192

    23

    2.11.2 Downlink Channel Functionality Breakdown

    2.11.3 Uplink Channel Functionality Breakdown

    2.11.4 Channel Functionality Description in Detail

    Physical channels

    PDSCH: Physical Downlink Shared Channel

    PBCH: Physical broadcast channel

    PMCH: Physical multicast channel

    PDCCH: Physical Downlink Control Channel

    PCFICH: Physical control format indicator channel

    PHICH: Physical Hybrid ARQ Indicator Channel

  • 7/22/2019 121787092 Huawei LTE Planning

    31/192

    24

    Reference Signal (RS)

    Cell specic RS

    UE-specic RS

    MBSFN RS

    Synchronization Signal (SCH)

    Primary Synchronization Signal (P-SCH)

    Secondary Synchronization Signal (S-SCH)

    SCH used for:

    Symbol synchronization

    Frame synchronization

    Cell-ID determination

    BCH indicates:

    Basic L1/L2 system parameters

    Downlink system bandwidth

    Reference-signal transmit power

    Multi-media Broadcast over a Single Frequency Network (MBSFN)-related parameters

    Number of transmit antennas

    HARQ resource allocation

    Control region is 1-3 OFDM symbols at the beginning of each subframe, composed of control channel elements (CCEs)

    4 Res = Resource element group (REG)

    9 REGs = 1 CCE

    PCFICH Physical Control Format Indicator Channel

    # of OFDM symbols of control region

    PHICH Physical Hybrid ARQ Channel

    ACK/NACK signalling

    PDCCH Physical Downlink Control Channel

    Scheduling

    UL power control

    SCH/BCH each occupy 72 center subcarriers regardless of system bandwidth

  • 7/22/2019 121787092 Huawei LTE Planning

    32/192

    25

    2.11.5 Downlink Control Channel and RE Mapping Relationship

    2.12 Cell Search, Synchronization & MobilityUE Call Flow View

    2.12.1 Cell Search and Synchronization

  • 7/22/2019 121787092 Huawei LTE Planning

    33/192

    26

    2.12.2 UE Procedure for Reporting Channel Quality Indication (CQI), Precoding Matrix

    Indicator (PMI) and Rank Indication (RI)

    As stated in TS 36-213, the time and frequency resources that can be used by the UE to report CQI, PMI, and RI are

    controlled by the eNodeB. For spatial multiplexing, the UE shall determine a RI corresponding to the number of useful

    transmission layers. For transmit diversity RI is equal to one. A UE in transmission mode 8 is congured with PMI/RI

    reporting if the parameter PMI-RI-Report is congured by higher layer signaling; otherwise, it is congured without

    PMI/RI reporting.

    CQI, PMI, and RI reporting is periodic or a-periodic. A UE shall transmit periodic CQI/PMI, or RI reporting on PUCCH

    as dened hereafter in sub-frames with no PUSCH allocation. A UE shall transmit periodic CQI/PMI or RI reporting

    on PUSCH as dened hereafter in sub-frames with PUSCH allocation, where the UE shall use the same PUCCH-based

    periodic CQI/PMI or RI reporting format on PUSCH. A UE shall transmit a-periodic CQI/PMI, and RI reporting on PUSCH

    if the conditions specied hereafter are met. For a-periodic CQI reporting, RI reporting is transmitted only if congured

    CQI/PMI/RI feedback type supports RI reporting. Figure below shows which channels will be used for different CQIreporting scenario

  • 7/22/2019 121787092 Huawei LTE Planning

    34/192

    27

    2.12.5 EUTRAN Hierarchy and Interface Overview

    2.12.4 Mobility Management

    2.12.3 System Information Bit Denition

  • 7/22/2019 121787092 Huawei LTE Planning

    35/192

    28

    2.12.6 Summary of Handover Call Flow 3GPP Example TS36.300

  • 7/22/2019 121787092 Huawei LTE Planning

    36/192

    29

    2.13 Example of Peak Data Rate Calculation

  • 7/22/2019 121787092 Huawei LTE Planning

    37/192

    30

    3 LTE Frequency and Spectrum Planning

    3.1 Frequency Spectrum Overview - FDD

    3rd Generation Partnership Project (3GPP) Release 8/9 (3GPP TS36.104-860 Table 5.5-1 E-UTRA frequency bands) has

    clearly dened LTE as a system that can operate in various frequency bands into order to suit the need of different

    operators in the world. The table below shows the actual frequency range listed per the specication for the Frequency

    Division Duplex (FDD) version.

    The most popular commercial LTE bands are 2.6GHz (Band 7), AWS (Band 4) and 700MHz (Band 12) while momentum

    is being built up also for 1800MHz (Band 3) as well as Public Safety spectrum (Band 14)

    According to 3GPP TS 36.104 V9.4.0 (2010-06), Band 6 is no longer applicable and Band 15 and Band 16 are listed as

    Reserved.

    3.2 Frequency Spectrum Overview - TDD

    3GPP Release 8/9 (3GPP TS36.104-860 Table 5.5-1 E-UTRA frequency bands) has also dened the operating frequency

    for Time Division Duplex (TDD) based LTE technology in various frequency bands in order to operate in different parts

    of the world. The table below shows the actual frequency range listed per the specication for the TDD version.

    Figure 3-1LTE FDD Spectrum Allocation

  • 7/22/2019 121787092 Huawei LTE Planning

    38/192

    31

    It is worth noting that around the 2.3GHz band (Band 40), there is a signicant frequency spectrum overlap (100MHz)

    between LTE TDD with WiMAX. To many WiMAX operators currently in this frequency band, it is an ideal opportunity

    to evolve their network back into the mainstream LTE technologies.

    3.3 Channel Bandwidth and Subcarrier Allocation

    According to 3GPP specication, Operators can assign different channel bandwidth to suit their particular needs per

    the gure below. The number of RB supported for each bandwidth is equal to number of sub-carriers divided by 12.

    Figure 3-2LTE TDD Spectrum Allocation

    Figure 3-3Transmission bandwidth conguration NRBin E-UTRA channel bandwidths

    The channel edges are defined as the lowest and highest frequencies of the carrier separated by the channel

    bandwidth, i.e. at FC+/- BWChannel/2.

  • 7/22/2019 121787092 Huawei LTE Planning

    39/192

    32

    Figure 3-4Denition of Channel Bandwidth and Transmission Bandwidth Conguration for one E-UTRA carrier

    Figure 3-5Visualizing the Relationship between Channel Bandwidth, NRB and Transmission Bandwidth Conguration

    3.4 Channel Arrangement

    According to 3GPP specication, operators can assign different channel bandwidth to suit their particular needs per

    the table below.

    3.4.1 Channel Spacing

    The spacing between carriers will depend on the deployment scenario, the size of the frequency block available and

    the channel bandwidths. The nominal channel spacing between two adjacent E-UTRA carriers is dened as following:

    Nominal Channel spacing = (BWChannel(1)+ BWChannel(2))/2

    where BWChannel(1)and BWChannel(2)are the channel bandwidths of the two respective E-UTRA carriers. The channel

    spacing can be adjusted to optimize performance in a particular deployment scenario.

    3.4.2 Channel Raster

    The channel raster is 100 kHz for all bands, which means that the carrier centre frequency must be an integer multiple of 100 kHz.

  • 7/22/2019 121787092 Huawei LTE Planning

    40/192

    33

    3.4.3 Carrier Frequency and EARFCN

    The carrier frequency in the uplink and downlink is designated by the E-UTRA Absolute Radio Frequency Channel

    Number (EARFCN) in the range 0 - 65535. The relation between EARFCN and carrier frequency in MHz for the downlink

    is given by the following equation, where FDL_lowand NOffs-DLare given in table 5.7.3-1 and NDLis the downlink EARFCN.

    FDL= FDL_low+ 0.1(NDL NOffs-DL)

    The relation between EARFCN and carrier frequency in MHz for the uplink is given by the following equation where

    FUL_lowand NOffs-ULare given in table 5.7.3-1 and NULis the uplink EARFCN.

    FUL= FUL_low+ 0.1(NUL NOffs-UL)

    NOTE: The channel numbers that designate central carrier frequencies so close to the operating band edges that the

    carrier extends beyond the operating band edge shall not be used. This implies that the rst 7, 15, 25, 50, 75 and 100

    channel numbers at the lower operating band edge and the last 6, 14, 24, 49, 74 and 99 channel numbers at the upperoperating band edge shall not be used for channel bandwidths of 1.4, 3, 5, 10, 15 and 20 MHz respectively because of

    the bandwidth requirement. For example, for a 20MHz carrier, using channel 99 as center frequency will extend the LTE

    carrier below the allocated spectrum (99*0.1 = 9.9MHz but actual requirement is 10MHz from lower edge)

    E-UTRA

    Operating

    Band

    Downlink Uplink

    FDL_low[MHz] NOffs-DL Range of NDL FUL_low[MHz] NOffs-UL Range of NUL

    1 2110 0 0 - 599 1920 18000 18000 - 18599

    2 1930 600 600 - 1199 1850 18600 18600 - 19199

    3 1805 1200 1200 - 1949 1710 19200 19200 - 199494 2110 1950 1950 - 2399 1710 19950 19950 - 20399

    5 869 2400 2400 - 2649 824 20400 20400 - 20649

    6 875 2650 2650 - 2749 830 20650 20650 - 20749

    7 2620 2750 2750 - 3449 2500 20750 20750 - 21449

    8 925 3450 3450 - 3799 880 21450 21450 - 21799

    9 1844.9 3800 3800 - 4149 1749.9 21800 21800 - 22149

    10 2110 4150 4150 - 4749 1710 22150 22150 - 22749

    11 1475.9 4750 4750 - 4949 1427.9 22750 22750 - 22949

    12 729 5010 5010 - 5179 699 23010 23010 - 23179

    13 746 5180 5180 - 5279 777 23180 23180 - 2327914 758 5280 5280 - 5379 788 23280 23280 - 23379

    17 734 5730 5730 - 5849 704 23730 23730 - 23849

    18 860 5850 5850 - 5999 815 23850 23850 - 23999

    19 875 6000 6000 - 6149 830 24000 24000 - 24149

    20 791 6150 6150 - 6449 832 24150 24150 - 24449

    21 1495.9 6450 6450 - 6599 1447.9 24450 24450 - 24599

    33 1900 36000 36000 - 36199 1900 36000 36000 - 36199

    34 2010 36200 36200 - 36349 2010 36200 36200 - 36349

  • 7/22/2019 121787092 Huawei LTE Planning

    41/192

    34

    Figure 3-6E-UTRA channel numbers 3GPP 36104-A10 Table 5.7.3-1

    E-UTRA

    Operating

    Band

    Downlink Uplink

    FDL_low[MHz] NOffs-DL Range of NDL FUL_low[MHz] NOffs-UL Range of NUL

    35 1850 36350 36350 - 36949 1850 36350 36350 - 36949

    36 1930 36950 36950 - 37549 1930 36950 36950 - 3754937 1910 37550 37550 - 37749 1910 37550 37550 - 37749

    38 2570 37750 37750 - 38249 2570 37750 37750 - 38249

    39 1880 38250 38250 - 38649 1880 38250 38250 - 38649

    40 2300 38650 38650 - 39649 2300 38650 38650 - 39649

    41 2496 39650 39650 - 41589 2496 39650 39650 - 41589

    42 3400 41590 41590 - 43589 3400 41590 41590 - 43589

    43 3600 43590 43590 - 45589 3600 43590 43590 - 45589

    NOTE: The channel numbers that designate carrier frequencies so close to the operating band edges that the carrier extends

    beyond the operating band edge shall not be used. This implies that the rst 7, 15, 25, 50, 75 and 100 channel numbers

    at the lower operating band edge and the last 6, 14, 24, 49, 74 and 99 channel numbers at the upper operating band

    edge shall not be used for channel bandwidths of 1.4, 3, 5, 10, 15 and 20 MHz respectively.

    3.5 Frequency Planning Recommendations

    3.5.1 Conventional Frequency Reuse Scheme 1*3*1

    Under this scheme, a single frequency will be used for the entire system. Although it eliminates the need of any

    frequency planning considerations, it also opens the door for inter-site and inter-sector interference which is

    detrimental for urban LTE deployment due to the high site density.

    Figure 3-7Conventional 1*3*1 frequency planning scheme

    Application scenario

    Limited application scenario in urban and suburban environment without impacting QoS/QoE.

    Possible application in highly isolated rural scenario where users are also highly scattered

  • 7/22/2019 121787092 Huawei LTE Planning

    42/192

    35

    Advantage

    High spectral efciency and high throughput per site.

    Easy to deploy.

    No special scheduling algorithm required

    Disadvantage

    High level of interference especially on cell edge area

    Low throughput on cell boundary and lower QoS/QoE for users on boundary area.

    Coverage control of cells becomes an important factor in achieving a high throughput level

    3.5.2 SFR 1*3*1 Downlink and Uplink

    SFR (Soft Frequency reuse) is the recommended frequency reuse methodology. Both FDD and TDD can use this interference

    reduction method. The SFR concept is based on dividing the entire LTE carrier bandwidth into 3 sub-sections as shown below

    Under this conguration, each sector will only use one of the sub-sections, also known as the primary band, which 1/3

    of the entire carrier bandwidth, to serve the cell edge users. As a result, the interference level between sectors can be

    reduced, thereby enhancing the throughput of those users.

    For those users location near the center of the cell, the other 2 sections, which is the remaining 2/3 of the carrier

    bandwidth, also known as the secondary band, will be used to serve these users. The gure below depicts the actual layout

    Figure 3-8SFR 1*3*1 Downlink frequency division scheme

    Figure 3-9SFR 1*3*1 Downlink frequency planning scheme

  • 7/22/2019 121787092 Huawei LTE Planning

    43/192

    36

    Application scenario

    Recommended conguration to satisfy high trafc and high site density requirement.

    Best results will require the introduction of Inter Cell Interference Coordination (ICIC)

    AdvantageReduce inter-cell interference under a high site density deployment.

    Improve cell edge user throughput and quality of experience.

    3.5.3 TDD Specic Frequency Planning Considerations

    It is very common for telecom Operators within the TDD band of LTE have a wider unpaired spectrum than the

    bandwidth dened maximum carrier bandwidth of 20MHz. As a result, the selection of carrier bandwidth for multiple

    carrier condition is also more complex in TDD than FDD. Moreover, the coexistence of WiMAX within the same TDD

    spectrum is also very common and this has further complicated the carrier and bandwidth planning for LTE TDD

    network from a carrier planning perspective. Planning engineers need to take all these variations along with customer

    throughput and coverage requirement into account when it comes to TDD frequency planning.

    Besides, carrier bandwidth, co-frequency and time sharing nature between uplink and downlink in TDD also require

    careful selection of guard band and pilot time slot (DwPTS, GP and UpPTS). Failure to include enough separation will

    create a lot of co-channel interference which will degrade the throughput performance signicantly

    Figure 3-10Uplink-Downlink Pilot Time Slot and Guard band Conguration Schemes

    Lastly, for TDD to work properly, all cells must be operating in time synchronous mode to avoid any extra interference

    being introduced to the network. IEEE 1588v2 implementation is recommended and will help to ensure the integrity of

    time synchronization within the LTE TDD network.

  • 7/22/2019 121787092 Huawei LTE Planning

    44/192

    37

    3.5.4 Frequency Band Selection

    As many Operators worldwide possess spectrum in various frequency bands, choosing which band to use for LTE

    is always an important consideration. Parameters that will affect the overall cell coverage will be discussed in the

    next chapter. However, it is important to remember many components on the radio path will have slightly different

    properties at different frequency bands which will modify the nal cell coverage radius. For example, antenna gain,

    feeder loss, power amplier output, propagation characteristics, cell edge user throughput and penetration loss are all

    dependent on the operating frequency chosen.

    Results shown below are typical comparison in coverage radius between different frequency bands. Final results are

    highly dependent on the actual parameters used for customer design.

    Figure 3-11Synchronization Solution based on IPclk or 1588v2

    Figure 3-12Cell Coverage Comparison (UL@128kbps) between various frequency bands

    Cell Range in Uplink Case -- Result

  • 7/22/2019 121787092 Huawei LTE Planning

    45/192

    38

    Cell Range in Downlink Case -- Result

    Figure 3-13Cell Coverage Comparison (DL@1024kbps) between various frequency bands

    3.5.5 Cyclic Prex Planning

    Although Cyclic Prex is not directly related to frequency or spectrum allocation, it will impact the actual cell range that

    can be served from a logical and signal processing perspective. By carrying a smaller number of symbols (6), a bigger

    cyclic prex is congured per cell to allow a bigger delay in propagation. This is also known as long CP.

    The gure below shows the difference in symbol congurations between the normal, 7 symbols conguration (norma

    lCP) against 6 symbols (long CP conguration)

    Figure 3-14Cyclic Prex Comparison

    3.5.6 Placing Multiple Technologies@Multiple Frequency Band

    Choosing which technologies for which spectrum is a major challenge for many Operators worldwide. It is highly

    dependent on what the Operator already owned and what is their future business plan.

    Typically, higher frequency bands are likely to deploy more data centric services for high density area (e.g. CBD). As a

    result, LTE is more likely the technology of choice for most Operators looking at launching data services in the higher

  • 7/22/2019 121787092 Huawei LTE Planning

    46/192

    39

    frequency band. The gure below just some 1 example of what customer may do with multiple technologies and their

    evolution in different frequency band. It is the responsibility of the radio planner and account managers to work with

    customer to determine the best combination to meet their interest.

    SingleSON Solution Benets:SingleSON brings synergized automation for GSM, UMTS and LTE

    It can remarkably reduce operational cost and improve efciency, better user experience.

    Dual-band Network Deployment is a trend

    Figure 3-15Example of Multiple Technologies Deployment to Various Frequency Band

  • 7/22/2019 121787092 Huawei LTE Planning

    47/192

    40

    Figure 4-1Radio network coverage pre-planning ow

    4 Link Budget and Coverage Planning

    Operators are rightfully focused on the service quality of a system and coverage is an important part of the service

    quality of a system. The aim of radio network planning is to balance coverage, capacity, quality, and cost so none of

    these can be considered in isolation.

    Various factors must be considered during LTE system coverage planning and setting of these parameters will affect

    coverage radius and the quantity of base stations. Coverage and design requirement must be analyzed in choosing

    parameters within the following parameter groups:

    Propagation-related

    Equipment-related

    LTE-specic

    System Reliability

    Specic Considerations

    Achievable cell radius can be derived from the Excel based link budget tools. Network planning tool, GENEX U-net, will

    provide site deployment specic simulation analysis to obtain the number of required base stations in the target area.

    The coverage area offered by a 3 sector and Omni site along with coverage planning ow is shown below

  • 7/22/2019 121787092 Huawei LTE