2011-2-01650-sk bab4001

Upload: richar-fredian

Post on 14-Oct-2015

23 views

Category:

Documents


0 download

TRANSCRIPT

BAB IVIMPLEMENTASI DAN EVALUASI4.1 Spesifikasi Sistem

Sistem yang penulis buat terdiri dari perangkat keras yang merupakan alat Pendeteksi kebocoran Gas LPG berbasiskan Arduino Uno (Atmega328), sensor gas LPG QM-NG1 dan sensor suhu LM35. 4.1.1 Perangkat Keras

Berikut adalah spesifikasi perangkat keras dari kebocoran Gas LPG berbasiskan Arduino (Atmega328) :

Adaptor 220 Volt ke 12 Volt sebagai sumber daya sistem pendeteksi kebocororan gas LPG. Modul pengontrol menggunakan ARDUINO UNO yang sudah terintegrasi Mikroprosesor Atmega328 didalamnya dan LCD dot matrix 16x2. Modul ini merupakan modul tempat terjadinya pemrosesan data input sensor yang akan menentukan pengaturan suhu dan tekanan Gas LPG di suatu ruangan. Modul ini mendapatkan sumber daya dari adaptor 12V dan mengubahnya ke tegangan 5V dengan menggunakan voltage regulator yang sudah terintegrasi didalam Arduino UNO sendiri agar mampu menjalankan semua komponen elektronik tanpa menimbulkan kerusakan. Berbagai komponen yang terhubung langsung dengan modul ini adalah sensor suhu, sensor Gas LPG. Sensor QM-NG1 yang digunakan sebagai sensor pendeteksi gas LPG pada sistem dan sensor LM35 sebagai sensor suhu ruangan yang digunakan untuk indikasi terjadinya kebakaran. LCD 16x2, relay, PC, sirine, rotary lamp, Modem GSM, dan simulasi rangkaian listrik disuatu ruangan. Pada modul ini juga dilengkapi dengan rangkaian untuk mengubah tingkat tegangan microcontroller agar data yang dikirim secara serial dapat dibaca oleh PC. Sensor suhu dan Gas LPG mendapatkan daya dari modul ini dan terhubung ke pin ADC dari ATMEGA328. Begitu juga relay driver untuk sistem aktuator terhubung langsung ke pin I/O dari ARDUINO UNO dan juga mendapatkan daya dari modul ini. Modul relay menerima perintah dari modul pengontrol untuk mengaktifkan dan mematikan relay yang dituju. Penulis menggunakan 1 buah relay untuk mengontrol sirine, rotary lamp, modem GSM, exhaust dan simulasi rangkaian listrik.4.1.2 Perangkat Lunak

Sistem perangkat yang digunakan dalam sistem pendeteksi kebocoran gas LPG ini menggunakan software Arduino Uno yang digunakan sebagai debugger program dan sebagai framework monitoring keadaan suhu dan kepekatakan gas LPG disuatu ruangan. Berikut ini adalah bentuk fisik dari alat Pendeteksi Gas LPG yang penulis buat:

Gambar 4.1 Bentuk bagian dari Perangkat pendeteksi kebocoran Gas LPGGambar 4.2 Bentuk sistem keseluruhan Perangkat pendeteksi kebocoran Gas LPGTampilan dari program debugger yangdigunakan untuk memasukkan program ke sistem yang dibuat adalah sebagai berikut:

Gambar 4.3 Tampilan program framework Arduino UNO4.2 Prosedur Operasional

Pengoperasian alat dimulai dengan menhubungkan adaptor 12 v untuk mengaktifkan perangkat Arduino Uno sebagai sistem utama pada alat, mengaktifkan GSM Module sebagai device yang berfungsi mengirimkan SMS ke User apabila terjadi indikasi kebocoran Gas LPG dan Kebakaran yang ditandai dengan meningkatnya suhu di ruangan. Ketika perangkat Arduino Uno diaktifkan untuk yang pertama kali, alat akan menampilkan waktu, tanggal dan tahun pada LCD, setelah itu sistem sensor akan mendeteksi tekanan Gas LPG dan suhu ruangan dengan Real Time. Data-data yang terbaca oleh sensor akan diolah di mikroprosesor untuk dihasilkan menjadi bit data digital yang nantinya akan ditampilkan pada layar LCD selain itu hasil pengolahan data akan tersimpan sebagai data Logger di Modul SD-Card dan hasilnya akan berbentuk dokumen berformat .txt. Agar history data dapat dipantau melalui Perangkat Komputer Sistem dihubungkan melalui jalur COM pada Perangkat Komputer. 4.3 Evaluasi Sistem Pengujian sistem akan dilakukan dalam beberapa tahap percobaan, masing-masing dari tahap tersebut memilki sistem pengujian yang berbeda pengujian sistem ini bertujuan untuk mengetahui ketahanan, karakteristik sistem sensor yang dipakai, dan seberapa besar efektifitas sistem yang dibuat dalam menyelesaikan suatu masalah. Pada uji coba, akan di pergunakan alat pengukur suhu dan pengukur tekanan gas LPG untuk melihat perbandingan apakah hasil yang dibaca sensor sama dengan hasil yang dibaca oleh alat ukur suhu seperti thermometer dan manometer sebagai alat ukur tekanan gas LPG yang keluar, dan juga untuk mengecek LCD bekerja sesuai dengan yang diinginkan, peneliti melakukan pengujian dengan cara melihat langsung hasilnya apakah sesuai dengan hasil yang diinginkan. Selain itu penguji juga melihat sistem aktuator yang dipasang didalam sistem apakah sudah sesuai dengan yang dihasilkan.4.3.1 Pengujian Pembacaan Sensor Gas LPG dengan jarak tertentuSensor Pendeteksi yang digunakan dalam sistem ini sudah sangat selektif dalam pemilihannya, hal ini mempertimbangkan kualitas yang dimilki yang akan disinkroniasai dengan sistem keseluruhan sehingga sensor dapat dipakai dan memilki ketahanan dan pembacaan data yang akurasi.Tabel 4.1 Hasil Pengujian Sensor Gas LPG terhadap Jarak

PercobaanJarakGas Terukur (mg)

110 cm38.375 ppm

220 cm34.500 ppm

340 cm32.000 ppm

460 cm28.750 ppm

5100 cm19.000 ppm

6120 cm8000 ppm

7140 cm6800 ppm

8150 cm6500 ppm

9160 cm5000 ppm

10200 cm5000 ppm

Pengambilan data percobaan diatas bertujuan untuk melihat seberapa jauh jarak deteksi sensor Gas LPG terhadap sumber Gas LPG yang bocor, Hasil Pengambilan data di tabel 4.1 diambil dengan cara memberikan Keluaran Gas LPG yang sama kadar tekanannya yaitu 40.000 ppm setiap percobaan. Dari tabel percobaan diatas bisa dijelaskan, bahwa sensor Gas LPG bisa mendeteksi dengan jarak efisien 1 meter, lebih dari itu daya deteksi sensor kurang maksimal kinerjanya.

Gambar 4.4 grafik pendeteksi Gas LPG terhadap jarak yang berbedaDari hasil Tabel 4.1 diatas diimplementasikan kedalam grafik 4.4, dari grafik bisa dilihat pergerakkan daya deteksi sensor semakin jauh jaraknya daya deteksinya semakin lemah, hal tersebut dikarenakan perubahan resistansi dari sensor tersebut.4.3.2 Pengujian Akurasi pembacaan data Sensor Gas LPG Tabel 4.2 Data Akurasi Pengukuran Gas LPG

PercobaanKadar Gas disemprot (PPM)Data yang terbaca (PPM)Kesalahan(%)

162200 ppm61250 ppm1.5

254320 ppm53800 ppm0.95

351980 ppm49970 ppm0.99

443228 ppm42997 ppm0.5

539430 ppm38890 ppm1.3

635400 ppm35187 ppm0.6

729770 ppm29590 ppm0.6

824190 ppm23989 ppm0.8

920230 ppm19967 ppm1.3

1011213 ppm10989 ppm1.9

Gambar 4.5 grafik tingkat akurasi Gas LPG terhadap inputan gas LPGPengambilan data percobaan diatas bertujuan untuk melihat seberapa bagus tingkat akurasi deteksi sensor Gas LPG terhadap sumber Gas LPG yang bocor, hasil Pengambilan data di tabel 4.2 diambil dengan cara memberikan Keluaran Gas LPG yang kadar tekanannya telah diukur sebelumnya dan sistem akan membaca gas LPG tersebut dan akan ditampilkan di LCD. Dari tabel percobaan diatas bisa dijelaskan, bahwa tingkat akurasi sensor Gas LPG sangat tinggi, dan memiliki kesalahan rata-rata data sangat keci yaitu 1,1 %4.3.3 Pengujian sensor Gas LPG terhadap WaktuTabel 4.3 Respon waktu sensor LPG

PercobaanTekanan Gas yang di semprotLuas Ruangan tempat penyemprotanWaktu terdeteksi hinggaa mencapai batas tidak normalWaktu Gas Habis (tidak ada kadar gas )

1 60.000 ppm2,5m x 2,5 m7 detik20 detik

2 50.000 ppm2,5m x 2,5 m7 detik20 detik

3 45.000 ppm2,5m x 2,5 m5 detik20 detik

4 40000 ppm2,5m x 2,5 m5 detik20 detik

5 30.000 ppm2,5m x 2,5 m5 detik10 detik

625.000 ppm2,5m x 2,5 m3 detik10 detik

720.000 ppm2,5m x 2,5 m2 detik10 detik

815.000 ppm2,5m x 2,5 m2 detik8 detik

913.000 ppm2,5m x 2,5 m2 detik8 detik

1010.000 ppm2,5m x 2,5 m2 detik5 detik

Pengambilan data percobaan diatas bertujuan untuk melihat seberapa cepat respon sensor dalam mendeteksi adanya gas LPG, selain itu pengujian ini juga bertujuan untuk melihat seberapa cepat efisiensi sistem aktuator exhaust dalam penyerapan gas LPG untuk dikeluarkan di suatu ruangan di banding dengan tanpa menggunakan sistem aktuator.

Percobaan diatas dilakukan di dalam ruang ukuran 2,5m x 2,5m , didalam ruang tersebut disemprotkan gas LPG dengan ukuran tertentu disetiap percobaan disemprotkan gas LPG dengan takaran yang berbeda-beda, setelah di lakukan penyemprotan, sensor akan mendeteksi gas LPG di dalam ruang tersebut. Pengambilan data ini diambil berdasarkan seberapa cepat respon sensor untuk mendeteksi gas LPG pada nilai yang sesuai dengan besarnya gas LPG yang disemprotkan. Dari hasil tabel 4.3 kita bisa melihat bahwa respon sensor mendeteksi gas sangat cepat sekali.

Selain pengambilan respon waktu sensor, di dalam tabel 4.3 menjelaskan seberapa besar efisiensi waktu dari penyerapan gas LPG menggunakan sistem aktuator Exhaust dengan tanpa menggunakan sistem aktuator Exhauts, dari data diatas bisa dilihat dengan adanya sistem aktuator Exhaust Penyerapan gas buang LPG bisa lebih cepat 15 detik di banding dengan tanpa menggunakan sistem aktuator exhaust. 4.3.4 Pengujian Sistem AktuatorTabel 4.4 Hasil sitem aktuator keseluruhan berjalan dengan benar

PercobaanTemperatur suhu RuanganKadar Gas LPGAktuator

HexaustSirineRotary LampSMSPemutusan arus Listrik

126 C6700 ppmNonoNoNoNo

226 C12000 ppmNonoNoNoNo

327 C17000 ppmNonoNoNoNo

432 C23000ppmYesyesYesyesYes

532 C26000ppmYesyesYesyesYes

651 C15000ppmYesyesYesyesYes

743C21000 ppmYesyesYesyesYes

828 C20000 ppmYesyesYesyesYes

929 C7000ppmNonoNoNoNo

Gambar 4.6 Tampilan hasil pengiriman peringatan Gas Bocor atau kebakaran dengan SMS

Pengujian diatas menjelaskan dengan kondisi tertentu berdasarkan parameter kondisi yang sudah ditetapkan untuk tekanan gas LPG terdeteksi > 20000 ppm atau suhu ruangan > 45o C sistem aktuator akan berjalan. Dilihat dari hasil tabel 4.4 bisa disimpulkan bahwa sistem aktuator yang terpasang dalam sistem bekerja sesuai dengan yang diharapkan.4.3.5 Pengujian Akurasi sensor Suhu LM35

Sensor suhu LM 35 merupakan sensor suhu yang digunakan peneliti untuk melihat suhu yang ada di dalam alat penetas telur, cara peneliti untuk mengujinya sensor LM35 adalah dengan mengukur output LM35 dengan menggunakan multimeter kemudian membandingkan nilainya dengan nilai yang ada pada lcd yang merupakan hasil konversi oleh microcontroller serta membandingkannya dengan suhu hasil bacaan alat ukur temperature. Peneliti menggunakan alat ukur temperature digital yang sudah dikalibrasi .Tabel 4.5 Hasil Akurasi Sensor

Output Sensor(Volt)Suhu Setelah Konversi(0C)Suhu Bacaan Alat Ukur (0C)Kesalahan%

0.2525.5250.9

0.2828.3280.7

0.3131310.8

0.3434.5340.8

0.3838.2380.6

0.3939.1390.8

Rata-rata suhu hasil konversi microcontroller = Jumlah suhu hasil konversi microcontroller / banyak data

Kesalahan = Perbedaan suhu hasil konversi microcontroller dan suhu alat ukur / rata- rata suhu hasil bacaan alat ukur x 100%

Kesalahan = (32.8 - 32.5) / 32.5 x 100%

Kesalahan = 0.923%

Berdasarkan hasil tabel 4.5, selisih pembacaan nilai suhu rata-rata antara instrument dengan kalibrator hanya 0,923%, selisih pembacaan rata-rata temperatur 0,3 0C.4.3.6 Pengecekkan data loggerHasil data yang telah diolah mikroprosesor akan tersimpan di dalam SD-Card sebagai ruang penyimpanan data, data-data tersebut berguna untuk melihat history data dari pengukuran gas LPG dan suhu di ruangan tersebut secara Real Time. Data tersebut di simpan dalam bentuk format data .TXT, selain itu data-data tersebut dapat di monitoring oleh komputer menggunakan jalur COM pada computer yang terhubung dengan Arduino Uno.

Gambar 4.7 tampilan data yang tersimpan 4.4 Evaluasi Sistem KeseluruhanBerdasarkan dari beberapa pengujian yang telah di lakukan pada sistem yang telah dibuat ada beberapa hasil evaluasi yang didapat yaitu :

Sistem yang dibuat memilki daya serap gas LPG dengan optimal kurang dari 1 meter, hal tersebut telah dibuktikan dengan 10 kali percobaan. Sistem pendeteksi gas LPG memiliki tingkat akurasi yang baik, dengan kesalahan data hanya sekitar 1,1%, serta tingkat akurasi suhu ruangan yang baik dengan kesalahan data hanya 0,9 % dengan pengujian masing-masing diambil sampling 10 kali percobaan Sistem aktuator seperti exhaust, sirine, rotary lamp, Modul Gsm untuk pengiriman sms otomatis ke user, serta pemutusan aliran lisrik sementara berjalan sesuai dengan sistem yang dibuat. Fitur data logger sebagai penyimpan data berjalan dengan baik dan menyimpan data secara real time.Dari beberapa hasil percobaan diatas kami bisa mengevaluasi bahwa sistem yang dibuat berjalan sesuai dengan rencana yang diharapkan secara keseluruhan.Tekanan Gas

(PPM

73

_1409737396.xlsChart1

6220061250

5432053800

5198049970

4322840500

3943038890

3540033587

2977027590

2495023500

2123019560

112909870

kadar gas inputan

kadar as yang terbaca sistem

Sheet1

kadar gas inputankadar as yang terbaca sistem

percobaan 16220061250

percobaan 25432053800

percobaan 35198049970

percobaan 44322840500

percobaan 53943038890

percobaan 63540033587

percobaan 72977027590

percobaan 82495023500

percobaan 92123019560

perobaan 10112909870

To resize chart data range, drag lower right corner of range.