dr. c. w. ong

Upload: zoom2

Post on 30-May-2018

228 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/14/2019 Dr. c. w. Ong

    1/34

    Jump to first page

    1

    Mechanics

    AP200Dr. C. W. Ong

  • 8/14/2019 Dr. c. w. Ong

    2/34

    Jump to first page

    2

    Textbook :

    Engineering Mechanics, Dynamics,by Meriam, J.L., Kraige, L.G.,John Wiley 1997 4th Ed.

    Mechanics of EngineeringMaterials , by P.R. Benham andR.J. Crawford, ELBS, 1988

  • 8/14/2019 Dr. c. w. Ong

    3/34

    Jump to first page

    3

    Assessment method :

    s Course Work 30% (Exercises and tests)

    s Examination 70%

  • 8/14/2019 Dr. c. w. Ong

    4/34

    Jump to first page

    4

    VectorAA vector consists of two things :

    1. Magnitude, represented by a

    number A

    2. Direction, represented by a

    unit vectorAe

    AeAA =

    e

  • 8/14/2019 Dr. c. w. Ong

    5/34

    Jump to first page

    5

    In Cartesian coordination system

    yAxA

    yA

    eAA A

    )sinx(cos

    yx +=

    +=

    =

    Y

    X

    A

    YA

    XA

  • 8/14/2019 Dr. c. w. Ong

    6/34

    Jump to first page

    6

    jBAiBABA

    jBiBB

    jAiAA

    YYXX

    YX

    YX

    )()( +++=+

    +=

    +=

    Y

    X

    YB

    xBB

    AYA

    XA A

    'B

    CBA

    =+

    Addition of vectors

  • 8/14/2019 Dr. c. w. Ong

    7/34Jump to first page

    7

    kAjAiA

    kAjAiA

    eAA

    ZYX

    A

    ++=

    ++=

    =

    coscoscos

    Direction cosine : cos , cos ,cos

    1coscoscos

    )coscos(cos

    )coscoscos(

    222

    2/1222

    2/1222222

    222

    =++

    ++=

    ++=

    =++=

    A

    AAA

    AAAAAZYX

    3-D Cartesian coordination system

    Y

    Z

    A

    X

    e

  • 8/14/2019 Dr. c. w. Ong

    8/34Jump to first page

    8

    Result of dot product is a scalar

    Dot product :

    CBA =

    cosABBA

    A

    B

    cosA

    Definition is :

  • 8/14/2019 Dr. c. w. Ong

    9/34Jump to first page

    9

    Cross product

    rule.handrightbydetermineddirectionwithvectors,twothetois

    and,sin:Definition

    vectornewaisResult

    =

    =

    C

    ABBA

    CBA

    AB

    C

    Fsin

    d

    F

    O

  • 8/14/2019 Dr. c. w. Ong

    10/34Jump to first page

    10

    kBjBB

    kCC

    kAjAiAA

    ZY

    Z

    ZYX

    +=

    =

    ++=A

    B

    C

    CBA

    )(Z

    Exercise : Show that CBA

    )(

    is the volume of the parallelepiped

    formed by the three vectors

  • 8/14/2019 Dr. c. w. Ong

    11/34Jump to first page

    11

    Presentation of vector product inrectangular coordination system

    kAjAiAA zYX ++=kBjBiBB zYX

    ++=

    ZZYYXX BABABABA ++= )(

    jABkBAiBA ZXYXZY

    ++= iABjBAkAB ZYZXYX

    ZYX

    ZYX

    BBB

    AAA

    kji

    BA

    =

    Dot product :

    Cross product :

  • 8/14/2019 Dr. c. w. Ong

    12/34Jump to first page

    12

    Fundamental of Mechanics ofMaterials

    Stress and strain :

    Assume F is uniformly distributed over thecross-sectional area A.

    A

    F

    F

    F

    F

    F

    F

  • 8/14/2019 Dr. c. w. Ong

    13/34

    Jump to first page

    13

    Normal stress

    [ ] )(/ 2 PapascalmNA

    F

    dA

    dF

    A

    F

    A==

    0lim

    F

    A

    FP

    Normal stress at a point :

  • 8/14/2019 Dr. c. w. Ong

    14/34

    Jump to first page

    14

    Total force F acting on a cross-sectional

    area is :

    = A dAF

    F F

    F

    F

    Tensile stress (+)

    Compressive stress (-)

  • 8/14/2019 Dr. c. w. Ong

    15/34

    Jump to first page

    15

    Shear stress :

    Define shear stress :

    A

    A

    Fixed area

    F

    F

    A

    F

    dA

    dF=

    Force F is tangential to the area.

    At a local point :

  • 8/14/2019 Dr. c. w. Ong

    16/34

    Jump to first page

    16

    Normal strain :A body deformed along the direction of stress. Normal strain is defined to describe the deformation :

    x

    x

    x

    F

    F

    l x

    F

    Ffixed

    Shear strain :Deformation under shear stress is defined as

  • 8/14/2019 Dr. c. w. Ong

    17/34

    Jump to first page

    17

    Elastic modulus

    Stress-strain curve

    In the elastic region, (Hooke's law)

    Youngs modulus (modulus of elasticity) E = /

    Shear modulus : (modulus of rigidity) G = /

    Stress

    Straino

    Yield pt.

    Workhardening

    breakElastic

    deformation

    d

  • 8/14/2019 Dr. c. w. Ong

    18/34

    Jump to first page

    18

    le

    Find the totalextension ofthe bar. 3 The width of a cross-sectional element at x :

    3 The stress in this element :

    3 The strain of this element:

    15mmW5mm

    X

    1.2m0.6mo

    kN2

    )(120

    )105(6.0

    3 mx

    mm

    xW ==

    Paxmx

    N2

    7

    22

    31088.2

    )120/(

    102 =

    =

    dx

    2

    4

    9

    271092.1

    10150

    /1088.2

    x

    x

    E

    =

    ==

  • 8/14/2019 Dr. c. w. Ong

    19/34

    Jump to first page

    19

    The extension of this element :

    The total extension for the whole bar becomes :

    = 2.13 x 10-4 m #

    dxx

    dxde2

    41092.1 ==

    ==8.1

    6.0 2

    41092.1dx

    xdee

  • 8/14/2019 Dr. c. w. Ong

    20/34

    Jump to first page

    20

    Bulk modulus :)/( VV

    pK

    =

    VV +

    p

    lim V 0 then

    dV

    dp

    VK =At a local point :

  • 8/14/2019 Dr. c. w. Ong

    21/34

    Jump to first page

    21

    Poisson's ratio :For homogeneous isotropic materials

    s normal strain :

    s lateral strain :

    s

    Poisson's ratio :s value of : 0.2 - 0.5 d

    dL

    = /L

    x=

    F F

    dd +

    x

    d

  • 8/14/2019 Dr. c. w. Ong

    22/34

    Jump to first page

    22

    Analysis of stress and strain inIsotropic Materials.

    EEE

    EEE

    EEE

    yxzz

    zxy

    y

    zyxx

    =

    =

    = ......(*)

    z

    zy

    yz

    yx

    zx

    xz

    x

    y

    xy xy

    z

  • 8/14/2019 Dr. c. w. Ong

    23/34

    Jump to first page

    23

    Rewrite (*) by xxx, yyy , z zz :

    Eyyxxzzzz

    Exxzzyyyy

    Ezzyyxxxx

    /)(

    /)(

    /)(

    ==

    =

  • 8/14/2019 Dr. c. w. Ong

    24/34

    Jump to first page

    24

    )()1(

    )(

    )1(

    )(1

    zzyyxxzzzz

    zzyyxxyyyy

    zzyyxxxxxx

    EE

    EE

    EE

    +++

    =

    ++

    +

    =

    +++

    =

    )()21( zzyyxxzzyyxxE

    ++=++

    Exercise : Verify)21(3

    =

    EK

    Solution

    From (*)

  • 8/14/2019 Dr. c. w. Ong

    25/34

    Jump to first page

    25

    For hydrostatic pressure

    pzzyyxx ===

    === zzyyxx

    3

    33

    34

    3

    4)(

    3

    4

    r

    rrr

    V

    V

    =

    r

    r

    3)(3 =

    r

    r

    )3()21( pE

    =

    )21(3/

    =

    E

    VV

    pK

    (symmetry)

  • 8/14/2019 Dr. c. w. Ong

    26/34

    Jump to first page

    26

    Similarly, take moment about x-axis, yz = zy

    Take moment about y-axis, xz = zx

    Shear stress and strain

    Take moment about the z axis, total torque = 0,

    so xy = yx

    z

    y

    x yx

    xy

    x

    y

  • 8/14/2019 Dr. c. w. Ong

    27/34

    Jump to first page

    27

    Gxyxy / =Gyzyz / =

    Gzxzx / =

    Shear strain :

  • 8/14/2019 Dr. c. w. Ong

    28/34

    Jump to first page

    28

    One better method is to select axes appropriately, such that

    /2===

    = yxxy

    y

    dx

    x

    dy

    Shear deformation is usually defined by : .,..., etcy

    dx

    x

    dy

    However, pure rotation may cause non-zero

    which cannot be used to represent any deformation

    ydx

    xdy

    and

    2/ x

    y

    2

    x

    y

    xdy

    x

    y

    xdy

    Pure

    rotation

  • 8/14/2019 Dr. c. w. Ong

    29/34

    Jump to first page

    29

    (AC)2(1+n)2 = (AD)2 + (AD)2 -2(AD)2 cos(90o+ )

    2(AD)2 (1+ n)2 = 2(AD)2+2(AD)2 sin

    1+2 n= 1 + sin 1 +

    2 n

    since = 2 yx

    n= yx

    Example : Show that n = yx

    2/ x

    y

    A

    C

    C

    D

    D2

  • 8/14/2019 Dr. c. w. Ong

    30/34

    Jump to first page

    30

    yx (lW) sin 45o x2 =LW n (equilibrium along n-

    direction)

    = 2(lcos 45o) W n

    Therefore yx = n

    G

    nn

    2 =n2=== GG

    nxyxy

    From definition :

    l

    Ll

    n

    yx

    xy

    2/ x

    y

    A

    2/

    yx

    xy

    G

    nn

    2

    =Example : Show that

  • 8/14/2019 Dr. c. w. Ong

    31/34

    Jump to first page

    31

    GE

    21

    =+

    (from p.24))(1 zzyyxxxxxxEE

    +++=

    n n

    - n

    - n

    Set xx = n = - yy ,

    zz = 0,

    xx = n

    n = (1+ ) n /E = n /2G (previous

    example)

    Example : Show GE

    21

    =+

    xamp e 3 (i) Here = 0 = 0 and

  • 8/14/2019 Dr. c. w. Ong

    32/34

    Jump to first page

    32

    xamp eThe cube of isotropicmaterial has side 20mm,E = 60 GPa, = 0.3.

    (i) Find the force exerted bythe restraining walls upon the

    block.

    (ii)Find the strain in ydirection

    3 (i) Here x = 0, y = 0 and

    3 Since :

    3 x = -9 x 106 Pa (compressive stress)

    3 The force exerted by the restraining wall :

    3 A x = (20 x 10-3 m)2 x (-9 x 106 Pa)

    3 = -3.6 x 103 N (compressive force)

    3

    (ii) The strain in y direction :

    z

    y

    12kN

    x

    Pam

    Nz

    7

    23

    3

    103)1020(

    1012=

    =

    )(1

    zyxx

    E =

    )]103(3.00[1060

    10 7

    9

    = x

    #4

    67

    9

    1095.1

    )]109(3.0)103(3.00[1060

    1

    )(1

    =

    =

    = xzyyE

    El ti St i E

  • 8/14/2019 Dr. c. w. Ong

    33/34

    Jump to first page

    33

    Elastic Strain Energy3 The energy store in the material :

    3 The energy store :

    3 Energy density within the material :

    FdxdW=dx

    F Fdx

    xAEFdxdU )(

    ==

    /

    /

    x

    AFE=

    VE

    AeEAEe

    dxxAE

    Ue

    =

    ==

    =

    2

    2

    2

    0

    2

    1

    )()(21

    21

    )(

    EE

    V

    Uu

    22

    2

    1

    2

    1 ==

    e=extension

  • 8/14/2019 Dr. c. w. Ong

    34/34

    34

    Similarly for shear strain :

    F

    dx

    = xdFU

    = Fdx

    ==

    /

    /

    x

    AFG

    G

    Gu2

    2

    2

    1

    2

    1 ==