miet 2394 cfd lecture 7(1)

Upload: cepong89

Post on 06-Jul-2018

232 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 Miet 2394 Cfd Lecture 7(1)

    1/33

    Computational FluidDynamics – Lecture 7 

    Prof. Jiyuan Tu

  • 8/17/2019 Miet 2394 Cfd Lecture 7(1)

    2/33

    RMIT University 2

     Why we need turbulenceprediction? 

    Determining:

    ※Frictional drag

    ※Flow Separation

    ※Transition from laminar to turbulent flow

    ※Thickness of boundary layers

    ※Flow miing rate in reaction ! combustion

    ※"tent of secondary flows

    ※Spreading of #ets and wakes$%%

    Almost every flow problem in industry is turbulent!

  • 8/17/2019 Miet 2394 Cfd Lecture 7(1)

    3/33

    RMIT University &

     Velocity Fluctuation

    u

    u

    ( )t ' u

  • 8/17/2019 Miet 2394 Cfd Lecture 7(1)

    4/33

    RMIT University '

     What is turbulence?( I)

    u

    u

    ( )t ' u

     Velocity fluctuating in a turbulent flow

    0

    0

    1( , , , )

    t T 

    t u u x y z t dt  

    +

    = ∫ 

    '( )u u u t  = +

    'u u u= −

    0 0 0

    0 0 0

    '2   1 1( ) ( )

    1( ) 0

    t T t T t T  

    t t t u u u dt udt u dt  

    T T 

    Tu uT  T 

    + + += − = −

    = − =

    ∫ ∫ ∫  (ormal shear stress

    0

    0

    '2 ' 21 ( ) 0t T 

    t u u dt  

    += >∫ 

  • 8/17/2019 Miet 2394 Cfd Lecture 7(1)

    5/33

    RMIT University )

     What is turbulence?( II)

    At large angles of

    attack ,flow may

    separate completely

    from the top surface of

    an airfoil , reducing

    lift drastically and

    causing the airfoil to

    stall

  • 8/17/2019 Miet 2394 Cfd Lecture 7(1)

    6/33

    RMIT University *

     What is turbulence?( III)

    ow and high !eynolds number "orte# shedding

  • 8/17/2019 Miet 2394 Cfd Lecture 7(1)

    7/33

    RMIT University +

     What is turbulence?( V )

     ,rithmetic average of velocity fluctuations and the Root Mean

    S-uare of the fluctuations

  • 8/17/2019 Miet 2394 Cfd Lecture 7(1)

    8/33

    RMIT University .

     What is turbulence?( VI)

    /a01aminar flow shear stress caused by random motion of molecules

    /b0Turbulent flow as series of random three3dimensional eddies

  • 8/17/2019 Miet 2394 Cfd Lecture 7(1)

    9/33

    RMIT University 4

    Drag &Lift Forces ( I)

    Flat plate

      Drag Friction Force=

    ,  0

     D pressureC    =

    , D D friction f  C C C = =

    2 21 1

    2 2

     D f D f   F F C Av C Av= = =

    Cylinder 

    , , D D pressure D frictionC C C = +

    0 LC    =

    P1>P2

    Symmetry

    P1 P2

  • 8/17/2019 Miet 2394 Cfd Lecture 7(1)

    10/33

    RMIT University 56

    Drag &Lift Forces ( II)

    Frictional velocity 

     LC  f  C 

     f  C 

      f  C 

      f  C 

     LC  Airfoil

    ,   D pressureC    ⇓ ,   L pressureC    ⇑

    $ % f w wC uτ τ ρ ⇒ =

  • 8/17/2019 Miet 2394 Cfd Lecture 7(1)

    11/33

    RMIT University 55

    Laminar V!urbulence

     aminar and turbulent "elocity profiles

     in the fully de"eloped region

     aminar 

    &urbulence

  • 8/17/2019 Miet 2394 Cfd Lecture 7(1)

    12/33

    RMIT University 52

     Assumptions and"omple#ity 

    ' '

    ij i j R u u ρ = −  ' '1, 2,i j u v= = →

    Diret numerial simulation of governing euations is only

    possible for simple low"#e flows

    $nstead% we solve #eynolds Averaged &avier"Sto'es (#A&S)

    euations:

    2iji i

    k i j j j

     RU U  pU 

     x x x x x ρ µ 

    ∂∂ ∂∂= − + +

    ∂ ∂ ∂ ∂ ∂

    Steady

    $nompressible flow

    *it+out body fores

    Reynolds stresses

  • 8/17/2019 Miet 2394 Cfd Lecture 7(1)

    13/33

    RMIT University 5&

    !urbulent hear tress

     y

    uvu t turb

    ∂=′′−=   µ  ρ τ 

    ' '

    w turb   u vτ τ ρ = = −#eynolds Stress

    Assumption

    Turbulence viscosity

    ,odelk    ε −

    -+e logarit+mi law : $

    $ 2ln 0

    u yu

    u v= +

    0 00 y+<

  • 8/17/2019 Miet 2394 Cfd Lecture 7(1)

    14/33

    RMIT University 5'

    $oussines% ypothesis .oussines observed

    Turbulent eddies transport momentum similar to molecule

    Recall, viscous stresses proportional to mean velocitygradients

    By analogy, turbulent stress also proportional to meanvelocity gradients

    .oussines proposed eddy visosity onept

      is referred to as t+e eddy visosity or turbulent

    visosityt u

    ' '   2

    ( )

     ji

    ij i j t ij

     j i

    uu

     R u u  x x ρ µ δ 

    ∂∂= − = + −∂ ∂

  • 8/17/2019 Miet 2394 Cfd Lecture 7(1)

    15/33

    RMIT University 5)

    k-  !wo'(%uation !urbulence

    )odel( I)

    -urbulent /ineti 0nergy '2 '2 '21 ( )2

      u v w= + +

    -urbulene Dissipation #ate' '

    ( )( )i it  j j

    u u

     x xε υ    ∂ ∂=

    ∂ ∂

    "rrors

    Models

    9all treatment

  • 8/17/2019 Miet 2394 Cfd Lecture 7(1)

    16/33

    RMIT University 5*

    k-  !wo'(%uation !urbulence

    )odel( II)

     D ! "      −=

    0*+0= µ C 

    T  "  y

     y x

     x y

     x

    k u

    k +  

     

      

     ∂∂

    ∂∂

    +   

      

     ∂∂

    ∂∂

    =∂∂

    +∂∂

    +∂∂

    σ 

    ν 

    σ 

    ν v

    ε 

    ε ε 

    ε 

    σ 

    ν ε 

    σ 

    ν ε ε ε " 

     y y x x y x

    u

    T T  +  

     

     

     

     

    ∂+  

     

     

     

     

    ∂=

    ∂+

    ∂+

    ∂v

    222

    2   

     

     

     

     

    ∂+

    ∂+

      

     

     

     

     

    ∂+ 

     

     

     

     

    ∂=

     x y

    u

     y x

    u !  T T 

    vv

    ν ν The production terms

    10k σ    = 1ε σ    = 1 1++C ε    =   2   12C ε    =

     D   ε =The destruction terms

    ε  µ 

    2k C vt  =

     D ! "      −=

    )( 21   DC  ! C k 

    "  ε ε ε ε 

    −=

  • 8/17/2019 Miet 2394 Cfd Lecture 7(1)

    17/33

    RMIT University 5+

    k'  !wo'(%uation !urbulence

    )odel( III)   model popular  because it is

    !obust

    -fficient

    .imple to use !easonably successful

    -#perience has shown that model is inade/uate for

    flows with

    .trong cur"ature .trong buoyancy effects

    .trong swirl

    k    ε −

    k    ε −

  • 8/17/2019 Miet 2394 Cfd Lecture 7(1)

    18/33

    RMIT University 5.

    !he *+, k-  )odel( I)

    "tend the turbulence model

    Renormali:ation ;roup theory basis /R(;0

     ,ble to replace wall function with a fine grid

    Turbulence kinetic energy consist of a<

    7onvection generation diffusion and dissipation term

    The transport e-uation for dissipation consist of a<

    7onvection generation diffusion destruction and

    additional term related to mean strain and turbulence

    -uantities% It has similar structure to standard model

    k    ε −

    k    ε −

  • 8/17/2019 Miet 2394 Cfd Lecture 7(1)

    19/33

    RMIT University 54

    !he *+, k-  )odel( II)

    ( )   R DC  ! C k 

    "    −−=   21   ε ε ε ε 

    ( )

    #

     $%

    %%%C  R

      o &2

    )

    )

    1

    1

    +

    =

    01*k σ    = 01*ε σ    = 1 1+2C ε    =   2 1*C ε    =

    Some of the coefficients can vary with the solution

    0*+0= µ C 

  • 8/17/2019 Miet 2394 Cfd Lecture 7(1)

    20/33

    RMIT University 26

    !he k-ω )odel( I)

    Formulate based on turbulent fre-uencyω

    1ower re-uirement for near wall resolution for low3

    Reynolds number flows<

    Same ;overning e-uation for turbulent energy k 

    2

  • 8/17/2019 Miet 2394 Cfd Lecture 7(1)

    21/33

    RMIT University 25

    !he k-ω )odel( II)

    00=′β 

    ;overning e-uation for turbulent fre-uencyω

    The model assumes that<

    Model constants

    ( )    

      

     ∇+⋅∇=⋅∇+

    ∂∂

    ω σ 

     µ  µ ω 

    ω 

    ω 

    )(

    t  u ()

     (  

    2

    2

    1

    1)1(2   βω 

    ω α 

    ω 

    ω σ  ρα  ω  ( ! k  x x

    k  F  k 

     j j−+∂

    ∂∂∂

    −−

    ω  ρ  µ 

      k 

    t  =

    =α  00=β    02=k σ    02=ω σ 

  • 8/17/2019 Miet 2394 Cfd Lecture 7(1)

    22/33

    RMIT University 22

     !he *eali-able k- )odel( I) =roposed by (,S, 1ewis modeling group /Shih et

    al%544'0 (ote that standard model gives

    Reali:able model ensures ?reali:ability@ i%e% =ositivity of normal stresses

    k    ε −

    '2 0( 1, 2, )uα    α ≥ =' '

    '2 '2

    1 1( 1,2,3 1,2,)u u

    u u

    α β 

    α β 

    α β − ≤ ≤ = =

    ε  µ 

    2

    k C vt  =

    ε 

     µ k U 

     A A

     s

    $

    0

    1

    +=

    02

    2   22

    2

    ≤′⇒∂∂

    −=′   u xU k 

    C k u ε  µ 

  • 8/17/2019 Miet 2394 Cfd Lecture 7(1)

    23/33

    RMIT University 2&

     !he *eali-able k-  )odel( II)

    ( )   

     

     

     

     

    ∂+

    ∂∂

    =+

    −=i

     j

     j

    iij

     * 

    ij x

    u

     x

    u" 

    #+k 

    # (C #"  (C " 

    2

    1,2

    2

    2

    212

    1ε 

    += ma#1 %%

    C    ( )

      212

    2 ij" 

    % ε =

     

    ( )   2

    1   %,%,cos

    1,cos,0++ ij

    ki jk ij

     so   " " " 

    " " " , ,  A A   =====   −ϕ ϕ 

      10k σ    = 12ε σ    =2   1C    =

    -+e Soures -erms

  • 8/17/2019 Miet 2394 Cfd Lecture 7(1)

    24/33

    RMIT University 2'

    !he Wall Function( I)"perimental 8ata

    1ogarithmic

    Region

    The turbulent boundary layer: respective dimensionlessvelocity profile as a function of the wall distance in

    comparison to experimental data

    )ln(1   ++ =   -yU κ 

    ++=  yU 

  • 8/17/2019 Miet 2394 Cfd Lecture 7(1)

    25/33

    RMIT University 2)

    !he Wall Function( II)

    Viscous Sublayer :   $

    $

     yuu

    u v=

    2

    $   w w y y yuuv v

    τ τ 

     ρ ρµ = = =   4w w

    u u u

     y y yτ µ µ µ  

    ∆ ∂= = =

    ∆ ∂

    Normalized variables:

    $

    u

    u u

    +

    =  $

     yu

     y v

    +

    =

    Normalized law of the wall   u y+ +=

    y

    5

    u

  • 8/17/2019 Miet 2394 Cfd Lecture 7(1)

    26/33

    RMIT University 2*

    !he Wall Function( III)

    1ln( ) p

    U u -y

    u   κ  

    + += =

    2

    u

    u

    τ  

    κ    =

    u

     y

    τ  

    ε  

    κ  

    =

    ,

    ,,

    ( )( )

    , p   T ' 

    T t , T t 

    T T C uT u ! 

    .

    τ   ρ    σ  

    σ  σ  

    + + −

    = − = +

    ( )( ) 6( ) 7 2t  t ij ij

    div kU div gradk - -  t 

     µ  ρκ   ρ µ µ ρε 

    σ 

    ∂+ = + + × −

    2

    1 1 2 2

    ( )( ) 6( ) 7 2t  t ij ijdiv U div grad C f - - C f    

    t   ε ε 

    ε 

     µ  ρε ε ε  ρε µ ε µ ρ 

    σ κ κ  

    ∂+ = + + × −

    High Reynolds Number

    Low Reynolds Number

    9all38amping functionε 

     ρ  µ   µ  µ 

    2k  f  C t  =

  • 8/17/2019 Miet 2394 Cfd Lecture 7(1)

    27/33

    RMIT University 2+

    !he Wall Function( V )

    ' 0v   =' 0u   =   0k  →   0ε  →

    2

    $ y

    u

    u  

    C =

    $

    0+1 y

    u

     yε    =

    This is the standard wall function at high

    Reynolds number 

    $

    2ln 0 yu  y

    u

    += + ,t low Reynolds number 

     y +$u   wτ    f  C 

    Boundary Condition at Solid Walls:

  • 8/17/2019 Miet 2394 Cfd Lecture 7(1)

    28/33

    RMIT University 2.

    "omparison of!urbulence( I)

    Turbulence model performance: pressure surface boundary layernormalied mean velocity profile at !" # $ %Uref  & " m's(

  • 8/17/2019 Miet 2394 Cfd Lecture 7(1)

    29/33

    RMIT University 24

    "omparison of!urbulence( II)

     Turbulence model performance: pressure surface boundarylayer normalied mean velocity profile at !" # $

    %Uref  & ) m's(

  • 8/17/2019 Miet 2394 Cfd Lecture 7(1)

    30/33

    RMIT University &6

     "omparison of!urbulence( III)

    36%&

    36%2)

    36%2

    36%5)

    36%5

    36%6)

    6

    35 6 5 2 & ' ) * + . 4 56

    8istance from step /AB0

       (  o  r   m  a l i  :  e  d   m  a   i   m  u   m  n  e  g  a t i  v  e  v  e l  o  c i t  y

    "perimental data R(; k3ε Reali:able k3ε Standard k3ε

    *aximum measured and predicted negative velocity profiles ofthe flow in the recirculation one

  • 8/17/2019 Miet 2394 Cfd Lecture 7(1)

    31/33

    RMIT University &5

    .sing !urbulence )odels( I) 8alculate !eynolds number and if necessary the swirl number

    of the flow

    .elect appropriate turbulence model 9or e#ample, use the   model for simple flows with no significant strain rates

    (ie pipe flows, channel flows)

    !:; model for separated flows, flows with large stream

  • 8/17/2019 Miet 2394 Cfd Lecture 7(1)

    32/33

    RMIT University &2

    .sing !urbulence )odel( II) Successful turbulence modeling re-uires

    engineering #udgment of< Flow physics

    7omputer resources available =ro#ect re-uirements

     ,ccuracy

    Turn around time

    Turbulence models ! near3wall treatments thatavailable

  • 8/17/2019 Miet 2394 Cfd Lecture 7(1)

    33/33

    RMIT University &&

    .sing !urbulence )odel( III) Modeling =rocedure

    7alculate characteristic and determine if

    Turbulence needs modeling

    "stimate wall3ad#acent cell centroid first beforegenerating mesh

    Cegin with SD" /standard 0and change to

    R(; RD"SDE or SST if needed

    Use RSM for highly swirling flows Use wall functions unless low3Re flow andAor

    comple near3wall physics are present

    k    ε −

     Re

     y

    +