miet 2394 cfd lecture 8(2)

Upload: cepong89

Post on 06-Jul-2018

243 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/17/2019 Miet 2394 Cfd Lecture 8(2)

    1/35

    Computational Fluid Dynamics –Lecture 8

    Prof. Jiyuan Tu

  • 8/17/2019 Miet 2394 Cfd Lecture 8(2)

    2/35

    RMIT University 2

    Solution Errors--Causes Solution error depends on:

    Discretion error -- usually the dominant contribution Equation solver error  Choice of computational domain Implementation of boundary and initial conditions

    Discretization error depends on: Grid size (overall refinement Grid quality (aspect ratio! ortho"onality Grid density (local refinement 

    Discretisation formula (lo#$hi"h order

    Equation solver is: (usually a minor source of solution error  can be source of instability (or poor iterative convergence )

  • 8/17/2019 Miet 2394 Cfd Lecture 8(2)

    3/35

    RMIT University 3

    Sources of errors in CFD

    ( I) Discretization error (DE

    Computer round-off error (%&E

    Errors due to physical modelin" (E'

      ()urbulence modelin" *uman errors + ine,perience 

    Wrong Boundary Condition

     Bad numerical scheme

    Wrong computational domain

     Bad computational model 

    Garbage in!

    Garbage out!

     Mesh

  • 8/17/2019 Miet 2394 Cfd Lecture 8(2)

    4/35

    RMIT University 4

    Sources of errors in CFD

    ( II) DE-)runcation error 

    ∂∆+

    −=

    ∂   +-

    -

    .

     x

     xo

     x x

    ii

    i

    φ φ φ φ 

    ∂∆+

    −=

    ∂   +

    .

     x

    T  xo

    t t 

    n

    i

    n

    i

    i

    φ φ φ 

    )runcation error /irst order 

    0ocal error  Space

    )imeGlobal error 

    The local and global discretization errors

    of finite difference method at the third

    time step at a specified nodal point 

  • 8/17/2019 Miet 2394 Cfd Lecture 8(2)

    5/35

    RMIT University 5

    Sources of errors in CFD

    ( II) %&E++Di"its1 di"its++Sin"le precision

    .2 di"its++Double precision

     SP 

    :

    4444.6667 4444.666666 

    4444.6666 

     A!" A!"

    ≠Example:A simple arithmetic

    operation performed

    with a computerin a single precision

    using seven significant

    digits

  • 8/17/2019 Miet 2394 Cfd Lecture 8(2)

    6/35

    RMIT University 6

    Sources of errors in CFD

    ( III)

     3o4 of Computations

    5ccumulated %&E   ↑

    As the mesh or time step size decreases,

    the discretization error decreases !

    but the round-off error increase!

    a6or error source in C/D

    E'++0aminar /lo#

      ++)urbulence /lo#

    odelin"

  • 8/17/2019 Miet 2394 Cfd Lecture 8(2)

    7/35

      Solution Integrity 

    7hy is predictive reliability important 8 

     Is the computer  (#uman$ #ard%are& infallible8  7hat should #e e,pect:

    solutions are accurate

     ' can be validated against reliable eperiments

  • 8/17/2019 Miet 2394 Cfd Lecture 8(2)

    8/35

    RMIT University 8

    Testing Solution

    Integrity Set up physical e,periment and measure 9ey data  )pensive$ time*consuming 

    Compare #ith personal e,perience

    +e ,no% %#at to epect (most of t#e time&

    Compare #ith standard cases;  )quivalent to -alidation/ 

    %ely on theoretical foundation  )quivalent to -erification/  

  • 8/17/2019 Miet 2394 Cfd Lecture 8(2)

    9/35

    RMIT University 9

  • 8/17/2019 Miet 2394 Cfd Lecture 8(2)

    10/35

    RMIT University 10

  • 8/17/2019 Miet 2394 Cfd Lecture 8(2)

    11/35

    RMIT University 11

    Computational Solution

    C/D is implemented by t#o-sta"e process:

     iscretisation ‑ !onversion of t#e governing partial

    differential equations into a system of algebraic equations

     

     )quation Solver  ‑ iterative solution of t#e algebraic

    equations to provide t#e approimate solutions

     

    Overview of the omputational olution "rocess

  • 8/17/2019 Miet 2394 Cfd Lecture 8(2)

    12/35

    RMIT University 12

    (Grid Conver"ence 

    C/D produces an appro,imate solution solution error 5 eact solution ** approimate solution

    (Grid Conver"ence  epect solution error 5 $ as $ t 5 refine grid until t#e solution no longer c#anges

     Consistency@Stability AB (Grid Conver"ence

     

    #terative convergence

     

  • 8/17/2019 Miet 2394 Cfd Lecture 8(2)

    13/35

    RMIT University 13

    Comments -- Conver"ence

    C&3SIS)E3C @ S)5I0I) AB C&3

  • 8/17/2019 Miet 2394 Cfd Lecture 8(2)

    14/35

    RMIT University 14

    Consistency Definition:  As $ y$ 2$ t 55 $ t#e system of algebraic

    equations s#ould recover t#e governing partial differential

    equation at eac# grid point 

    Comments: 0est by epanding all nodal values of t#edependent variables about t#e control volume centre

    E,ample: ;ass conservation equation 

  • 8/17/2019 Miet 2394 Cfd Lecture 8(2)

    15/35

    RMIT University 15

      Taylor Series Expansion about

    point    )qn (ran,el sc#eme

  • 8/17/2019 Miet 2394 Cfd Lecture 8(2)

    16/35

    RMIT University 16

      /inite Grid Solutions (. Comments: Grid refinement may be restricted by memory si2e or !P? time

    @btain t#e most accurate solution %it# fied 9$ 9B$ 9C 

     Some grids can increase accuracy but increase t#e number of iterations to

    convergence of t#e algebraic equation solution  )pect solution error to follo% truncation error 

    0ypical truncation error:

      (    = 36  &D ∂ E( ρu&3 ∂  E F (   y= 36  &D ∂ E( ρv&3  ∂ yE F

    0#erefore refine grid  %#ere solution gradients large:  boundary layers$ up%ind stagnatn points$ for%ard*facing corners

  • 8/17/2019 Miet 2394 Cfd Lecture 8(2)

    17/35

    RMIT University 17

      /inite Grid Solutions (

    Is the "rid fine enou"h8 refine grid until important parameter no longer variant  eg force against a %all 

    Parameter

    Value

    Number of elements

  • 8/17/2019 Miet 2394 Cfd Lecture 8(2)

    18/35

    RMIT University 18

    E!uation Structure ost industrial fluid flo#s involve si"nificant motion

    omentum equations describe three ma6or interactions

    (convective& transport****************** motion of fluid 

    diffusion********************* (turbulent& eddy diffusivity source terms********production of turbulent ,inetic energy

    Is solution accuracy sensitive to discretisation of specific

    terms 8  (YES

     

    $%&!

    xxx

    u

    t ' ' ' 

    '  

    φ

    Γ

     

    φ

     

    ρφ

  • 8/17/2019 Miet 2394 Cfd Lecture 8(2)

    19/35

    RMIT University 19

    "ig#er $rder Interpolation%I&

     !omments:

      So far #ave interpolated i.e. depends on local values

     9o% interpolateassuming -u/ is positive

    ( ) E  pe

      !"" #  "   =

    ( )   ( ) E W WW W  E  pW e  !"" !" #  "and  !"" !" #  "   ==

  • 8/17/2019 Miet 2394 Cfd Lecture 8(2)

    20/35

    RMIT University 20

    "ig#er $rder Interpolation%II&

    (eneral three point interpolation:

      and equivalent formula for and  

    q  iscretisation Sc#eme @rder (0.).& 

    < !entered difference =  E*pt up%ind =

      E34 ?1!H (4 pt& =

      =3E 4*pt up%ind E

    [ ]   ( )( )[ ]   ( )   ($% &x &x '  &x"&& &x")($

     &x &x '  &x" &x") "

     pW  pW  pW  p

     E  p p E  E  pe

    +−+−+

    ++=

    W "  '&' "(" x"'  W e −=∂∂

  • 8/17/2019 Miet 2394 Cfd Lecture 8(2)

    21/35

    RMIT University 21

    'ounded "ig#er $rderSc#eme 3umerical dispersion may appear as #i""les ounded second order scheme:  1n (

  • 8/17/2019 Miet 2394 Cfd Lecture 8(2)

    22/35

    RMIT University 22

    Comments 5bove bounded schemes available in /0FE3) ounded schemes more accurate but less robust than po#er

    la# scheme /or fast iterative conver"ence #ith hi"her accuracy! start from

    conver"ed po#er la# solution oundin" is effectively introducin" very localised numerical

    dissipation

  • 8/17/2019 Miet 2394 Cfd Lecture 8(2)

    23/35

    RMIT University 23

      (nstructured )ridDiscreti*ation

    'o#er-la# (segregated eqns. only >ace value obtained from solution toace values obtained t#roug# multi*dimensional reconstruction

    FIC scheme( for quad.3#e. cells and segIated eqns.  Jig#er*order construction of face values from S@? and

    interpolation in mes# direction  ;ore accurate for structured mes#es t#at are mainly

      flo% aligned 

    7c

  • 8/17/2019 Miet 2394 Cfd Lecture 8(2)

    24/35

    RMIT University 24

      Second $rder (p+ind %S$(&

    0inear reconstruction  provides =nd order accuracy on unstructured grids up%ind values obtained from linear$ piece%ise discontinuous

    s#ape functions limiting  is used to -suppress %iggles/ 

  • 8/17/2019 Miet 2394 Cfd Lecture 8(2)

    25/35

    RMIT University 25

     Linear ,econstruction 0inear reconstruction provides:

    better accuracy t#an stencil*based sc#emes compatibility %it# arbitrary cell s#apes (tetra#edrals$

    triangles&

    improved accuracy on s,e%ed grids

    Comments: uses more

    information t#an

    stencil*based 

     sc#eme eample:

    diffusion terms

  • 8/17/2019 Miet 2394 Cfd Lecture 8(2)

    26/35

    RMIT University 26

     Structured s (nstructured

    5ccuracy: bot# can ac#ieve =nd rder accuracy for t#e convective terms structured grids rely on truncation error reduction unstructured grids rely on linear reconstruction

    Economy: structured grids lead to fe%er operations in t#e discretised equations unstructured grids can cover a domain %it# fe%er cells

    %obustness:

    reliable algorit#ms available for bot# types solution adaption on unstructured grids is less li,ely to affect

    robustness limiters can be introduced for bot# to avoid -%iggles/

  • 8/17/2019 Miet 2394 Cfd Lecture 8(2)

    27/35

    RMIT University 27

    'roblem definition  turbulent or laminar flo%K steady or transient L  is t#e p#ysical model$ eg granular multip#ase$ inaccurate L

    Geometry and "rid  is t#e imported !A file correct L

    oundary Conditions  is t#e upstream boundary too close to t#e body L

    Solution method  is a #ig#er*order sc#eme required L

    Systematic rocedure forSolution Integrity -- $erie+

  • 8/17/2019 Miet 2394 Cfd Lecture 8(2)

    28/35

    RMIT University 28

    Define clearly #hat the problem is +#at do you %ant to find outL

    +#at are t#e important parameters you need to inputL

    +#at %ill be t#e defining c#aracteristics of t#e flo%(eg turbulent #eat transfer L&

    0oo9 for computational efficiencies !an you ma,e any simplificationsL

     Jo% muc# of t#e real domain do you need to modelL

    !an you run any simple cases first to test your modelL

    )uidelines – roblem

    De.nition

  • 8/17/2019 Miet 2394 Cfd Lecture 8(2)

    29/35

    RMIT University 29

    5ny possibility of import8  A!1S 3 1G)S 

    5ny simplifications8  SymmetryL

     Periodic "oundariesL

    Fse >top do#n? approach to "eometry creation

    Consider dividin" the domain up into smaller sections formore control over the "rid

    a9e use of 6ournal files K

     Parametric modelling   )asy transport of geometry specification files

    )uidelines – )eometry

  • 8/17/2019 Miet 2394 Cfd Lecture 8(2)

    30/35

    RMIT University 30

    )rid /uality Grid aspect ratio: 

    A) * + x Comments:

     9eed to c#oose y small if rapidsolution c#ange in t#e y direction 

    #f A) ./0 or A) 1 2! possible reduction in accurac+ ma+be poor iterative convergence &or divergence$

    Grid distortion: @rt#ogonality (   5 M deg& desirable Comments:

    !#oose grid so t#at 4N deg O O

  • 8/17/2019 Miet 2394 Cfd Lecture 8(2)

    31/35

    RMIT University 31

      Sudden C#anges in )rid Si*e

     Comments:   !ould occur at bloc, boundaries in multibloc, procedure

     !ould occur at duct inlet to a plenum c#amber 

     E,ample:  Mass conser1ation e2uation

     Comments: 0.). contains diffusion terms (=nd derivs&**destabilising %#en r     <  ;a,e sure grid c#anges slo%ly and smoot#ly

     iscretisation of =nd derivatives requires very smoot# grid c#anges

  • 8/17/2019 Miet 2394 Cfd Lecture 8(2)

    32/35

    RMIT University 32

    Does your selection of boundary conditions match the real

    #orld conditions 8 eg ,$ epsilon c#ange rapidly ust do%nstream

      of inlet value specification

    Is it possible to limit the domain size by specifyin" the

     boundary condition in more detail 8 eg reduce upstream pipe lengt#$ if specify inlet profile

    Fse the >patch? command to fill areas after initialization4

    )his is particularly useful for free surface problems4 5re the boundaries in the correct locations8

    eg are far*field boundaries far enoug# a%ayL

    )uidelines – 'oundary

    Conditions

  • 8/17/2019 Miet 2394 Cfd Lecture 8(2)

    33/35

    RMIT University 33

    If the residuals are diver"in":  isplay t#e contours after initiali2ation. Are t#e initial conditions

    correctL

    !#ec, t#e models. ;aybe start as laminar and s%itc# to turbulent

    later in t#e solution$ for eample. If the residuals initially reduce = then are oscillatory:

     1f flo% is assumed steady$ rerun as a transient problem

    !ould a different type of boundary condition be more stableL (i.e.

    outflo% instead of pressure boundaryL&

    !#ec, for %#ic# equation residual is largest 

    GuidelinesLSolution Conver"ence

  • 8/17/2019 Miet 2394 Cfd Lecture 8(2)

    34/35

    RMIT University 34

    *i"her order differencin" schemes are required foraccuracy  Qun t#e solution first %it# default sc#emes$ t#en s%itc# to #ig#er

    order once converged 

    Is the problem #ell-posed 8

      o t#e boundary conditions suit t#e problem L

     1ncorrect specification of nearby boundary conditions

    5dequate "rid resolution 8  istorted volumes solution adaption or revise t#e grid 

     Jig# gradients ' coarse grid solution adaption

    Guidelines L Solution 5ccuracy

  • 8/17/2019 Miet 2394 Cfd Lecture 8(2)

    35/35

    RMIT University 35

    Conclusions

    5ssess C/D solution inte"rity p#ysical eperiments personal eperience t#eoretical foundation

    E,pect computational solution to conver"e to the e,actsolution as ∆,! ∆y! ∆z! ∆t AAB M

    (see, Rgrid * independentR solution&

    /inite "rid solutions Avoid  *** sudden c#anges in grid si2e

      *** large c.v. aspect ratios*** grid distortion

      *** large c.v. area variation over domain