krd important

Upload: viven-dran

Post on 03-Jun-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 krd important

    1/8

    P e r g a m o n

    Chemical En ineering Science, Vol. 50, No. 2, pp. 223 230, 1995

    Copyright 1995 Elsevier Science Ltd

    Printed in Gre at Britain. All rights reserved

    0009 2509/95 $9.50 + 0.00

    0 0 0 9 - 2 5 0 9 9 4 ) 0 0 2 3 0 - 4

    R E S I D E N C E T I M E D I S T R I B U T I O N F O R U N S T E A D Y - S T A T E

    S Y S T E M S

    J. FERN.ANDEZ-SEMPERE,* R. FONT-MONTESINOS and O. ESPEJO-ALCARAZ

    Departamento de Ingenieria Quimica, Universidad de Alicante, Apartado 99, Alicante, Espafia

    ( R e c e i v ed 1 M a r c h 1994;a c c e p t e d i n r e v is e d f o r m 4 A u g u s t 1994)

    Abstract--The concept of residence time distribution (RTD) can also be applied to incompressible luids in

    closed-closed systems under nonsteady conditions, when the residence time distribution expressed as

    a function of a residence time, defined in this paper, is independent of the volume and/or the flow rate. In

    this paper, an analysis of the hydrodynamics of the plug flow reactor (PFR), the continuous stirred tank

    reactor (CSTR), the plug flow reactor with axial dispersion (DFR) and a series of n-CSTR under

    unsteady-state conditions is made. A generalized residence time distribution is proposed for analyzing the

    behavior of the system. The proposed RTD is applied to the experimental data obtained when a tracer is

    introduced as a pulse in a sewage system. Three runs, with different outlet flow ranges, were carried out. By

    means of the generalized RTD, a disperse flow reactor model for correlating the experimental data was

    proposed. In this way, the variation deduced in the tracer outlet concentration can be explained, despite the

    fact that the outlet flow range is different from one run to another.

    I N T R O D U C T I O N

    The use of residence time distrib ution (RTD) curves to

    characterize the behavior of reaction systems, espe-

    cially continuous reactors at steady state, is well

    know n and accepted. A large amount of experimental

    infor mation is available in some basic books (Leven-

    spiel, 1962; Froment an d Bischoff, 1979; Smith, 1981;

    Denbigh and Turner, 1984; Fogler, 1992; Westerterp

    e t a l . , 1993). The measuremen t of RTD is based on the

    injection of a tracer material in the system and sub-

    sequent determination of the tracer concentration in

    the fluid leaving the system. Three different methods

    are used: (a) injection of the tracer in a very short t ime

    interval at the ent rance of the system (pulse injection);

    (b) introduction of a concentration change in the

    form of a step function and (c) intr oduct ion of a peri-

    odic concent ration fluctuati on in the inflow. F rom the

    information obtained from any of these methods, the

    behavior of a certain element of fluid can be known.

    This is normally when steady-state conditions are

    considered: the inlet flow to the system is always the

    same and the system volume remains constant. This is

    usually the case when a cont inuous reactor is studied.

    Nevertheless, little information has been obtained

    for systems under unsteady-state conditions. Na uma n

    (1969) studied the RTD for a stirred tank reactor. Fan

    e t a l . (1979) proposed a stochastic model of the un-

    steady-state age distribution in a flow system.

    Schwartz (1979) applied the basic concepts of turn-

    over time, mean age and mean transit time to the

    atmospheric SO2 and sulfate aerosol. Vaccari

    e t a l .

    (1985) considered the growth of micro-organisms in

    unsteady-state activated sludge system. Calu and

    Lameloise (1986) studied the RTD in systems of vari-

    *Author to whom correspondence should be addressed.

    223

    able volumic mass flow and applied it to evaporators

    in sugar plants. Dickens e t a l . (1989) studied the RTD

    for unsteady flows in a baffled tube.

    When env ironmental problems are studied (con-

    taminating spills is a sewage system, lagoon-purifying

    plants, etc.), in many occasions the flow is not con-

    stant and in some cases the volume is variable. In this

    case, two phenomena can affect the model flow: (a) the

    changes due to the inlet flow and/or to the system

    volume, and (b) the changes due to the nonsteady

    conditions. Therefore, when a tracer injection is used

    in this type of system, the RTD will be modified by

    random flow and/or volume changes. Nevertheless, in

    spite of these phenomena, the system flow can be

    approximately characterized as indicated in this pa-

    per, when a reduced time (defined in the following

    sections) is independe nt of the volume and /or the flow

    rate.

    RTD IN CLOSED ~2LOSED SYSTEMS

    The analysis presented in this paper is applied to

    closed-closed systems with incompressible fluids.

    Nevertheless, it is possible that some conclusions can

    be applied in other circumstances also. Two different

    situations can occur when the inlet flow and the outlet

    flow vary:

    --The inlet flow is the same as the outlet flow, for

    any time, although the flow varies with time.

    Therefore, the volume of the system is constant.

    --As the inlet flow is different from the outlet flow,

    the volume of the system also changes.

    These two cases are analyzed in this paper. In both

    cases, and for a par ticu lar mass of fluid, residence time

    distribution function (E) similar to that used when the

  • 8/12/2019 krd important

    2/8

    224

    f l o w i s c o n s t a n t a n d t h e s y s t e m i s i n s t e a d y s t a t e i s

    d e f i n e d .

    C o n s i d e r a s y s t e m a s i n F i g . l ( a ), w i t h v a r i a b l e i n l e t

    a n d o u t l e t f l o w s w h i c h a r e n o t n e c e s s a r i l y e q u a l . A t

    a c e r t a i n t i m e , a f l o w o f fl u i d e n t e r s t h e s y s t e m . B e -

    t w e e n t a n d t + d r , t h e f r a c t i o n o f t h i s f l o w t h a t l e a v e s

    t h e s y s t e m c a n b e d e f i n e d b y E d t . L o g i c a l l y , t h e

    d i s t r i b u t i o n f u n c t i o n E w i ll b e d i f fe r e n t i n o t h e r s i t u -

    a t i o n s . I n s o m e c a s e s , h o w e v e r , i t c o u l d b e p o s s i b l e t o

    k n o w E a n d c h a r a c t e r i z e t h e s y s t e m ( f o r a s y s t e m o f

    c o n s t a n t f l o w a n d u n d e r s t e a d y s t a te , t h e f u n c t i o n E i s

    t h e s a m e f o r a l l t h e f r a c t i o n s o f f l u i d e l e m e n t s f l o w i n g

    t h r o u g h t h e s y s t e m ) .

    F u n c t i o n E c a n b e o b t a i n e d b y m e a n s o f a p u ls e

    t e s t: A t t = 0 , a c e r t a i n a m o u n t o f t r a c e r M i s i n s e r t e d

    i n t o t h e s y s te m a n d t h e t r a c e r c o n c e n t r a t i o n i n t h e

    o u t l e t s e c t i o n is t h e n a n a l y z e d . F i g u r e l ( b ) sh o w s t h e

    v a r i a t i o n o f t h e t r a c er c o n c e n t r a t i o n C a n d t h e i n l e t

    a n d o u t l e t f l o w v s t i m e . T h e t r a c e r i s d i s t r i b u t e d

    c o m p l e t e l y i n t o t h e i n l e t f l u i d , s o t h e o u t l e t f l o w

    c o n c e n t r a t i o n i s a n i n d i c a t i o n o f t h e p r e s e n c e o f fl u i d

    e l e m e n t s s t a i n e d w i t h t h e t r a c e r , a s o c c u r s i n s t e a d y

    s ta t e .

    T h e t r a c e r t o t a l a m o u n t ( M ) c a n b e c a l c u l a t e d f r o m

    t h e e x p r e s s i o n :

    M = d M = C d V = C Q o d t

    (1)

    0 0 0

    M b e i n g t h e s u m o f a l l t h e t r a c e r m a s s e l e m e n t s

    p r e s e n t a t e a c h m o m e n t i n t h e f lu i d l e a v i n g t h e s ys -

    t e m , C th e t r a c er c o n c e n t r a t i o n a n d Qo t h e o u t l e t f l o w .

    E q u a t i o n ( 1 ) c a n b e w r i t t e n a s

    f

    o~ ( CQ o/M ) =

    (2)

    t

    1

    0

    w h e r e

    ( C Q o /M ) d t = A M / M .

    (3)

    T h e e x p r e s s i o n

    C Q o / M

    r e p r e s e n t s t h e f r a c t i o n o f

    f l u id e l e m e n t s r e m a i n i n g i n t h e s y s te m a t a t i m e b e -

    t w e e n t a n d t + d t , a n d s o

    ( C Q o / M ) d t = E d t

    (4)

    J . F E R N A N D E Z - S E M P E R E

    et a l

    a n d

    C Q o / M = E .

    (5)

    T h e m e a n r e s i d e n c e t i m e f o r t h e m a s s o f fl u i d c o n -

    s i d e r e d c a n b e c a l c u l a t e d b y

    f

    oo E t dt

    f = o

    o~ E t dt.

    6 )

    0

    ~ E d t

    0

    T h e t w o c a se s p r e v i o u s l y m e n t i o n e d a r e a n a l y z e d

    as fo l lows .

    S y s t e m s w i t h c o n s ta n t v o l u m e

    I n t h e c a s e o f s y s t em s w i t h v a r i a b l e f l o w b u t w i t h

    a c o n s t a n t s y s t e m v o l u m e ( i n l e t f l o w = o u t l e t f lo w ) ,

    t

    t h e v a l u e s o f

    E / Q o

    c a n b e p l o t t e d v s S o

    Q o d t .

    T h e

    f o l l o w i n g c a n b e d e d u c e d :

    ( E /Q o) d [ ; o Q o d t ] = ( E / Q o ) Q o d t = E d t

    (7)

    a n d t h e r e f o r e

    r e p r e s e n t s t h e f r a c t i o n o f f l u i d e l e m e n t s t h a t e n t e r s t h e

    r e a c t o r a t t = 0 a n d l e a v es t h e r e a c t o r b e t w e e n t a n d

    t + d t .

    O n t h e o t h e r h a n d , f r o m e q . ( 5 )

    E /Q o = C / M .

    (8)

    N o w c o n s i d e r t h e f o l l o w i n g ca se s.

    P l u # f l o w t h r o u g h a s y s t e m o f c o n s ta n t v o l u m e

    (V)

    w i t h v a r i a b le f l o w

    (Q o ). T h e d i s t r i b u t i o n f u n c t i o n w i l l

    a l w a y s b e t h e s a m e : a D i r a c d e l t a f u n c t i o n t h a t a p -

    p e a r s w h e n t h e p u l s e i n j e c t i o n is i n t h e e x i t s e c t i o n .

    T h i s o c c u r s , t a k i n g i n t o a c c o u n t t h a t t h e f l u i d i s

    i n c o m p r e s s i b l e , w h e n t h e f l u i d v o l u m e t h a t h a s l e ft t h e

    s y s t e m f r o m t h e i n l e t o f t h e p u l s e i n j e c t i o n i s th e s a m e

    a s t h e s y s t e m v o l u m e .

    L

    a ) . variable volume

    V

    b

    Q i

    Qo

    t=O t

    Fig. 1. (a) System with inlet flow, outlet flow and volume

    changing with t ime. (b) Varia t ion of the out le t f low Qo and

    the t racer co ncentra t ion with t ime.

    I d e a l s t ir r e d t a n k r e a c t o r o f c o n s t a n t v o l u m e

    (V)

    w i t h

    v a r i a b le f l o w

    ( Q o) . I f a p u l s e i n j e c t i o n i s i n t r o d u c e d i n

    t h e s y s t e m w i t h a t r a c e r a m o u n t , M , a n d t h e r e f o r e

    w i t h a n i n i t ia l c o n c e n t r a t i o n :

    C o = M / V

    (9)

    t h e t r a c e r b a l a n c e w i ll b e

    Q oC = - d ( V C ) / d t = - V d C / d t

    (10)

    a n d , t h e r e f o r e ;

    - d C / C = ( Q o /V ) d t.

    I n t e g r a t i n g b e t w e e n C = C o f o r t = 0 a n d C = C

    f o r t = t , t h e f o l l o w i n g c a n b e o b t a i n e d :

    [ f o l

    = C o e x p - ( l / V )

    Q o d t .

    (11)

  • 8/12/2019 krd important

    3/8

    Residence time distribution for unsteady-state systems

    Fr om eqs (5) , (9) and (11)

    E = C Qo / M = C o ex p [ ( - 1 / V ) f o ' Qo d t ] Qo / M

    = ( Q o / V ) e x p [ ( - l /V ) fo Q o d t(12)

    and , the re fore ,

    E/Qo = ( l / V ) e x p [ ( - 1 / V ) f o ' Q o d t ] . (13)

    T h i s e x p r e s s i o n i s e q u i v a l e n t t o t h a t p r e s e n t e d b y

    Na u m a n ( 1 9 6 9 ) .

    I f t h e s y s t e m v o l u m e ( V ) i s f ix e d a n d k n o w n , E/Qo

    d e p e n d s o n l y o n t h e i n t e g r a l v a lu e a n d i s n o t a f f e c te d

    b y t h e v a r i a t i o n o f Qo with t ime.

    Cascade of N equal ideally s tirred tanks o f constant

    volume

    (V)

    with variable f low

    (Qo) . The previous case

    c a n b e e x t e n d e d t o a c a s c a d e o f N t a n k s . T h e r e s u l ti n g

    e q u a t i o n w o u l d b e

    ( E / Q o ) = ( N / V ) ( N / V ) Q o d t [ I / ( N - 1 ) ]

    x e x p [ ( - - N / V ) f f Q o d t] (14)

    and , aga in , E/Qo d e p e n d s o n l y o n t h e i n t e g r a l v a l u e

    S; Qo dt.

    Ax ially dispersed plug f low reactor of constant vol-

    ume (V) with variable f low (Qo). In th i s case , a s sumin g

    a c o n s t a n t r e a c t o r s e c t i o n , t h e m a s s b a l a n c e c a n b e

    e x p r e s s e d b y

    6 C / 6 t = D ~ 2 C / ~ x 2 - - U

    (~C/(~X

    ( 1 5 )

    w h e r e

    u = (Qo/S) = Qo/(V/L) = QoL/V (16)

    F r o m e q s ( 15 ) a n d ( 16 )

    : o

    C/~ Qo d t = (D/Qo) (62 C/6x a) - {L /V) (6C/6x ) .

    (17)

    W h e n D v a r i e s a p p r o x i m a t e l y l i n e a r l y w i t h Qo,

    D/Qo c a n b e c o n s i d e r e d c o n s t a n t a n d t h e r e f o r e t h e

    di s t r ibu t ion func t ion wi l l on ly depend on So Qo dt.

    Dimensionless eq uations

    W h e n t h e f lo w i s c o n s t a n t , t h e R T D f u n c t i o n c a n b e

    expres sed in a d ime ns ionles s w ay (E0) as a func t ion of

    0 = t/F, (18)

    the d imens ionles s t ime . S imi la r ly , when the f low i s

    v a r i ab l e , d i m e n s i o n l e ss e q u a t i o n s c a n b e o b t a i n e d f o r

    t h e v a r i a t i o n

    E/Qo = f [ fot Q d tl (19)

    225

    I n t h i s c a s e t h e d i m e n s i o n l e s s e q u a t i o n w o u l d b e

    [ f o l

    V /Qo = f ( l / V ) Q o d t (20)

    w h e r e

    f 0

    o = E V / Q ,

    a n d

    O = ( I / V ) Q o d t

    ( 2 1 )

    a n d t h e r e f o r e

    Eo = f ( 0 ) . ( 2 2 )

    According to th i s de f in i t ion , the d i s t r ibu t ion func-

    t ion for the cases cons ide red previous ly wi l l be the

    fo l lowing:

    Plug f low reactor. In th i s case , the input s igna l

    appears in the out l e t w i th a d imens ionles s t ime de lay

    equa l to 1 .

    Continuous ideally stirred tank reactor. F r o m a m a ss

    ba lance , eq . (23) can be obta in ed:

    Eo = exp ( - 0 ) . (23)

    Cascade of N equal ideally mixed tank reactors.

    F r o m a m a s s b a l a n c e , t h e f o ll o w i n g e q u a t i o n is o b -

    t a i n e d i f t h e n u m b e r o f t a n k s ( N) i s c o n s t a n t :

    Eo = [N(NO ) N 1/(N -- 1 ) ] e x p ( - - N 0 ) . ( 2 4 )

    Axia lly dispersed plug f lo w reactor. In this case, eq.

    (17) can be wr i t t en as

    6 C / 6 0 = 6 C / 6 I ( 1 / V ) f ~ Q o d t ]

    = (D V/Qo L 2) (32 C / 6 z 2 ) - 6 C / 6 z (25)

    where z i s a d imens ionles s l ength ( z = x /L) a n d t h e

    di spers ion module i s

    D V/Qo L 2 = D /uL.

    I f th i s mo dule i s cons tan t , i . e . t he ra t io D/Qo is

    c o n s t a n t , a ll t h e e q u a t i o n s p r o p o s e d i n t h e R e f e r e n ce s

    remain val id.

    Systems with variable volume

    In th i s case , a d i s t r ibu t ion

    c a n b e d e f i n ed , w h e r e V i s t h e r e a c t o r v o l u m e a n d Qo

    i s the out le t f low.

    T h e e x p r e s s i o n (EV/Qo) d [So (Qo /V)dt ] w h i c h

    e q u a l s E dr, represent s the f rac t ion of f lu id e le -

    me nt s l eaving the sys tem be tween t and t + d t , o r be -

    tween the d imens ionles s t imes [ ' .(Qo/V) dt a n d

    So (Qo/V) dt + (Qo/V)dt

    The expression'U---

    EV/Qo

    equa l s the d imens ionles s res idence t ime d i s t r ibu t ion

    t

    E* and So (Qo/V)d t represent s the d imens ionles s

    t ime 0" .

    T h e d i s t r i b u t i o n f u n c t i o n d e f i n e d i n t h i s w a y h a s

    the adv anta ge tha t , i n the fo l low ing cases , it dep end s

    o n l y o n s o m e p a r a m e t e r s a n d c a n t h e r e f o r e b e u se fu l

  • 8/12/2019 krd important

    4/8

    226

    J . FERNANDEZ-SEMPERE

    et al .

    for studying the hydrodynamic behavior of the sys-

    tem, if the state is unsteady and the volume is not

    constant.

    P l u g f l o w i n a v e s s e l w i t h c o n s t a n t l en g th .

    In this

    case, the system section and volume change, although

    the length remains constant. It is assumed that u, the

    velocity at which the fluid is flowing at a particular

    moment, is constant along the vessel and its value is

    Qo/S,

    which can however change with time. In this

    case, it can be easily deduced that the residence time is

    a pulse func tion at the mea n value if* = 1.

    C o n t i n u o u s s t i r r e d t a n k r e a c t o r .

    Making a mass

    balance for the tracer, when a pulse injection is used in

    a stirred tank, the same re lation indica ted by eq. (23) is

    obtained. In this case however 0* and E~ appear,

    instead of 0 and

    Eo:

    E* = exp (- 0" ). (26)

    D i s p e r s e d p lu g f l o w w i t h c o n s t a n t l e n g t h .

    Assuming

    that at any particu lar moment the velocity (u) and the

    section (S) of the system are constant along the reac-

    tor, where

    Q o = Su ,

    (although these values can change

    with time), and that the dispersion coefficient is con-

    sidered constant, the solution obtained would be the

    same as in the case of steady state, but using 0* and

    E~ instead of 0 and

    Eo.

    Note that the

    ( D V / Q o L 2 )

    is

    the reciprocal of the some times incorrectly called

    Peclet number (Levenspiel, 1979).

    A P P L I C A T I O N TO T H E S T U D Y O F A S E W A G E S YS T E M

    C h a r a c t e r is t ic s o f t h e s y s t e m

    The previous equations were used to study the

    effect of polluting agents discharged by the Alicante

    University Science Faculty (Phase I) on the municipal

    sewage system. Four departments (Organic Chem-

    istry, Inorganic Chemistry, Physical Chemistry and

    Chemical Engineering) as well as some laboratories

    from the Biology Section discharge their wastewaters

    into the system studied. A tracer injection technique

    was used to study the behavior of the system.

    NaCl was selected as the tracer, using a solution

    near satu ration point and analyzing the level of

    sodium ion in the outlet po int of the system. Aroun d

    1000 g of sodium ion was used as an aqueous sol ution

    which was rapidly discharged into a sink in the stu-

    dents' laboratory. At the outlet point, samples were

    taken every 5 min and analyzed by flame spectro-

    photometry. Results of the tracer concentration

    measurements, after subtra cting the Na + content in

    the sewage water prior to the run, are presented in

    Table 1 for different times. It is possible that other

    uncont rolled additions of Na + took place as a conse-

    quence of the research and teaching activities carried

    out in the laboratories. Table 1 also shows the total

    amount of Na introduced. It can be observed that

    these values are similar to those calculated by the

    integra tion of eq. (1) from the outlet concent ration of

    Na +

    The tracer stream was injected from the students'

    laboratory of the Chemical Engineering Department

    because it was the closest point to the sewage system

    C a s c a d e o f N e q u a l i d e a l l y s t ir r e d t a n k s w i t h v a r i-

    a b l e f l o w a n d v o l u m e , w i t h t h e s a m e r e s i d e n c e t i m e f o r

    a l l t h e t a n k s a t a n y t i m e a n d w i t h t o t a l v o l u m e e q u a l t o

    N t i m e s t h e l a s t ta n k v o l u m e ( n u m b e r o f t a n k s i s c o n -

    s t an t ) .

    In this case, it is considered tha t there is a vari-

    able flow in the N tanks, a variable total volume and

    a variable volume in each one of the tanks, but the

    ratio between the volume and the outlet flow (resi-

    dence time) is the same for all the tanks. The total

    volume, which equals V, is also considered to be equal

    to N times the volume of the last tank (VN). The

    number of tanks is constant and does not vary with

    time.

    An expression similar to eq. (24), with 0* and

    E~ instead of 0 and

    Eo,

    can be deduced:

    E ~ = I N ( N O * ) N - 1 / ( N -

    1) ] exp (-N O*) . (27)

    It must be noted that, to calculate eq. (27), the

    previous assumptions have been considered.

    It can be concluded from the previous deductions

    that the general dimensionless relations presented for

    steady state and applied to plug flow, ideal stirred

    tank, cascade of N-tanks and plug flow with axial

    dispersion, can also be applied to systems with con-

    stant volume at any situation and to systems with

    changing volume only if other conditions occur in the

    system.

    Table 1. Variation of tracer con-

    centration in the different runs

    Concentration

    Time (s) (kg/m3)

    R u n

    1 Na amount introduced:

    0.98 kg

    Na amount calculated by eq. (1):

    1.066 kg

    Mean residence time calculated by

    eq. (6): 1836 s

    0 0.0

    600 0.0

    1200 0.0053

    1500 0.0048

    1800 0.0117

    2100 1.5189

    2400 2.5451

    2700 1.2749

    3000 0.5782

    3300 0.357

    3600 0.229

    3900 0.1639

    4200 0.128

    4500 0.0953

    4800 0.0829

    5100 0.0682

    5400 0.0655

    5700 0.0615

    6000 0.0757

    6300 0.0625

  • 8/12/2019 krd important

    5/8

    R e s i de nc e t i me d i s t r i bu t i on

    Table 1 .

    (Contd.)

    C o n c e n t r a t i o n

    Tim e (s ) (kg/m 3)

    Run 2 N a + a m o u n t i n t r o d u c e d :

    1 .040 kg

    N a a m oun t c a l c u l a t e d by e q . (1 ) :

    1 .162 kg

    Me a n r e s i de nc e t i me c a l c u l a t e d by

    eq. (6): 2484 s

    0 0 .0

    600 0.0

    900 0 .0

    1200 0.0

    1500 0.0

    1800 1.4856

    2100 1.4476

    2400 0.6206

    2700 0.3376

    3000 0.1786

    3300 0.1186

    3600 0.0646

    3900 0.0446

    4200 0 .0356

    4500 0.0266

    4800 0 .0186

    5100 0.0156

    5400 0.0786

    5700 0.1256

    6000 0.0486

    6300 0.0225

    6600 0.0194

    6900 0.0094

    7200 0.0044

    Run

    3 N a a m o u n t i n t ro d u c e d :

    0.966 kg

    N a a m oun t c a l c u l a t e d by e q . ( 1) :

    0.902 kg

    Me a n r e s i de nc e t i me c a l c u l a t e d by

    eq. (6 ): 2772 s

    0 0.0

    600 0.0

    1200 0.0

    1500 1.1512

    1800 0.4422

    2100 0.0862

    2400 0.0517

    2700 0 .048

    3000 0.0261

    3300 0.0057

    3600 0.005

    3900 0.0036

    4200 0 .0

    4500 0 .0

    4800 0 .0124

    5100 0 .0291

    5400 0.0138

    5700 0.0086

    6000 0 .0037

    6300 0 .0013

    6600 0 .0037

    6900 0.0

    7200 0.0

    a n d w a s t h e r e f o r e t h e p o i n t w h e r e t h e p o l l u t i n g e f fe c t

    i s m o s t n o t i c e a b l e ( l es s d i l u t i o n o f t h e t r a c e r s t r e a m ) .

    S a m p l e s w e r e t a k e n a t t h e p o i n t w h e r e t h e s y s t e m

    s t u d i e d d i s c h a r g e s i n t o t h e g e n e r a l U n i v e r s i t y s e w a g e

    f o r uns t e a d y - s t a t e s y s t e ms 227

    s y s t e m . T h i s p o i n t w a s s e l e c t e d b e c a u s e i t w a s t h e

    o n l y o n e w h e r e i t w a s p o s s i b l e t o m e a s u r e t h e f l o w .

    Flow

    T h e f l o w o f t h e s y s t e m w a s m e a s u r e d w i t h d i f fi c ul ty .

    T h e u s u a l t e c h n iq u e s o f f lo w m e a s u r e m e n t c o u l d n o t

    b e u s e d d u e t o t h e d i f f i c u l ty o f a c c e s s t o t h e s e w a g e

    s y s t e m a n d t o i t s s h a l l o w n e s s . A v e s s e l w i t h a c a p a c i t y

    o f 2 6 1 w a s t h e r e f o r e u s e d t o m e a s u r e t h e f l ow . T h e

    o u t l e t p o i n t w a s s e l e c t e d i n o r d e r t o o b t a i n e a s y

    a c c e ss a n d g o o d v i si b il it y . F l o w m e a s u r e m e n t s w e r e

    t a k e n e v e r y 5 m i n f o r a p e r i o d o f 1 0 0 - 1 2 0 m i n . T h e

    r e s u l t s a r e p r e s e n t e d i n F i g . 2 .

    Numerical treatment of the results

    V a l u e s o f t h e o u t l e t t r a c e r c o n c e n t r a t i o n s a r e

    p l o t t e d v s t i m e i n F i g . 3 . I f t h e s e r e s u l t s a r e u s e d t o

    o b t a i n c u r v e E t o e s t a b l i s h t h e r e s i d e n c e t im e d i s t r i -

    b u t i o n , d i f f e r e n t c u r v e s o b t a i n e d a t d i s t i n c t d a y s c a n

    b e s h o w n i n F i g . 4 . T h e r e a s o n f o r th i s b e h a v i o r i s t h e

    out le t f low x (1E +3) (m3/s )

    2

    1 . 5

    0 . 5

    / ,,, ~ . ~ - . ~ ~ , ~

    \k ' / & :

    J

    i

    4 6

    t ime x 1E-3 ) s )

    I ~ r u n l ~ , - r u n 2 ~ r u n 3 J

    Fig. 2 . Out le t f low vs t ime.

    c o n c e n t ra t i o n ( k g /m 3 )

    3

    2.5

    2

    1.5

    1

    0.5

    0

    2 4 6

    t ime

    x 1E-3) s)

    I ~ n ~ n l * ~ n 2 ~ r o n _ ~

    Fi g. 3 , O u t l e t c on c e n t r a t i on v s t i me .

  • 8/12/2019 krd important

    6/8

    228

    E x ( 1 E + 3 ) ( l / s )

    2 .5

    1.5

    0.5

    0 2 ~ 4 - 6 8

    t im e x (1 E-3) (s)

    I ~ - r u n l ~run2 ~ r u n 3 1

    J . F E R N A N D E Z - S E M P E R E et al.

    E./Oo I m3)

    2.5

    ~ i ,

    I ,

    ' l

    1.5 ~

    i

    0 . 5

    0 ~ . . . .

    0

    Fig. 4. Residence time function (E) vs time.

    k ,

    2 4 6 8 10

    f Q o d , , m 3 ,

    j O r u n l r u n 2 ~ r u n 3 ]

    t

    Fig. 5. Residence time function (E/Qo) vs ~oQodt .

    cont inuous change in the system flow (as can be seen

    in Fig. 2) as well as in the system volume.

    In order to predict the behavior of the system, the

    above-described treatment was used. The tracer

    amoun t (M) and the average residence time (/-) were

    calcula ted for equal time intervals using eqs (1) and (6)

    (Table 1). Next, a new E function was obtained from

    eq. (5).

    Initially it was assumed that the volume in the

    system was constant, although the flow is variable.

    However, when E / Q o was plotted vs So Q o d t , (Fig. 5)

    it was found that the curves for different experiments

    did not coincide. This could be due to a variable

    system volume. On considering the average residence

    time and the range of outlet flows, it can be deduced

    that the system volume is different in each run. Conse-

    quently, the volume was then considered as a function

    of the system outlet flow:

    V = a Qo . (28)

    An explanation of this variation is presented in Ap-

    pendix A.

    According to eq. (26), values of E V / Q o were plotted

    vs the dimensionless time ( 0 * = So ( Q o / V ) d t using the

    value of V given by eq. (28). Parameters a and b were

    optimized by means of a modified simplex method in

    order to obtain an average dimensionless time if*

    close to unity for each run (Fig. 6). The expression

    obtained for the system volume was

    V = 286.31(Qo)O.7154 (29)

    where V is expressed in m 3 and

    Qo

    in m3/s. The

    exponent 0.7154 is similar to that deduced in Appen-

    dix A.

    In Fig. 6, it can be observed that there is a great

    similarity in the value of 0* in the three experiments,

    as well as in the shape of the three curves. Most of the

    tracer appears in a big peak (at values of 0* between

    0.7 and 0.9) and later, a much smaller peak appears.

    Note that there is logically a coincidence of the

    greatest peak around 0* = 1 but, at the same time,

    E*=EV/Qo

    5

    0.5 1 1.5 2 - 2.5 3 3.5

    ] O r u n l r u n 2 ~ r u n 3 1

    0 *

    Fig. 6. Residence time function (E*) vs 0".

    there is a coincidence, in runs 2 and 3, of the smallest

    peak. In r un 1, with a smaller value of rate flow, tak ing

    of samples was stopped before the appear ance of the

    second maximum. However, for the last experimental

    points in run 1, it can be observed that there is an

    increase of the E* values, according to the second

    maximum that appears in the other runs. The coincid-

    ence of the second peak has not been introduced in

    the model and therefore corroborates the utility of the

    proposed model.

    The maximum value of E v / Q o in Fig. 6 allows the

    maximum concentration that would be obtained in

    the system to be calculated if an amount M of the

    polluting agent were discharged into it. Thus, taking

    into account eq. (5):

    E = C Q o / M

    and therefore

    E V /Q o = C V / M . (30)

    So, the maximum concentration can be obtained

    from eq. (31):

    Cm =x = ( M / V ) ( E V /Q o ) . . . (31)

  • 8/12/2019 krd important

    7/8

    Residence t im e d is t r ibut ion for u ns teady-s ta te sys tems

    Ta ble 2. Characteristics of the system stu died

    229

    R u n

    Flow range M ax im um t racer M ax im um t race r

    ( x 1 0 4 ) concen t ra t ion concen t ra t ion / tra ce r

    (m3/s) (kg/m 3) am oun t ( l /m 3)

    Dispers ion

    Dispersion coefficient

    module (m2/s )

    1 2.6 -6 2.54 2.4

    2 6-1 4.3 1.49 1.3

    3 11.6-16.6 1.15 1.3

    0.038 0.553

    0.021 0.351

    0.012 0.245

    A t t h e s a m e t im e , f r o m F i g . 6 , t h e v a l u e o f t h e E s

    d i s p e rs i o n m o d u l e

    [D/uL = D V/(Qo

    L 2 ) ] a s a f u n c -

    t i o n o f t h e s y s te m f lo w ( T a b l e 2 ) c a n b e c a l c u l a t e d . E *

    T h e g r e a t e r t h e f l o w , t h e s m a l l e r t h e d i s p e r s i o n

    m o d u l e . T h e v a l u e o f L i s a r o u n d 1 9 5 m . C o n s i d e r i n g L

    t h e m e a n v a l u e s f o r t h e f lo w r a t e r a n g e in d i c a t e d i n M

    T a b l e 2 a n d t h e c o r r e s p o n d i n g v a l u e s o f V , t h e d i s p e r - N

    s i o n c o e f f i c ie n t s w e r e e s t i m a t e d a n d a r e p r e s e n t e d i n Q i

    T a b l e 2 . I t c a n b e o b s e r v e d t h a t t h e d i s p e r s i o n c o e f f i -

    Qo

    c i e n t d e c r e a s e s w h e n t h e m e a n f lo w is g r e a t e r . A I - S

    t h o u g h t h e a i m o f t h i s p a p e r i s n o t t o o b t a i n th e t

    r e l a t i o n s h i p b e t w e e n t h e d i s p e r s i o n c o e ff i ci e n t a n d t h e i

    f lo w i n s e w a g e s y s te m s , a n e x p l a n a t i o n b a s e d o n s o m e u

    d a t a f o u n d in t h e l i t e r a t u r e (L e v e n s p i e l , 1 96 2, 19 79 ) i s V

    p r e s e n t e d in A p p e n d i x B . T a b l e 2 a l so s h o w s th e x

    m a x i m u m t r ac e r c o n c e n t r a t i o n o b t a i n e d a n d t h e r a t io z

    ( m a x i m u m c o n c e n t r a t i o n / t r a c e r a m o u n t ) , w h e r e t h e

    v a l u e s o f M c o n s i d e r e d a r e t h o s e o b t a i n e d f r o m i n t e -

    g r a t i o n o f e q . ( 1 ).

    A l t h o u g h t h e p r o p o s e d m o d e l d o e s n o t e x a c t l y

    o b t a i n t h e s a m e c u r v e f o r d i f f e r e n t c o n d i t i o n s , i t i s

    c a p a b l e o f p r e d i ct i n g a p p r o x i m a t e l y p e a k s o r m a x i m a

    o f c o n c e n t r a t i o n , w h o s e d i s p e r s i o n i s a f u n c t i o n o f t h e

    o p e r a t i n g f lo w .

    CONCLUSIONS

    F o r c l o s e d - c l o s e d s y s te m s , w h e r e t h e i n l e t f lo w , t h e

    o u t l e t f lo w a n d t h e v o l u m e o f a n i n c o m p r e s s i b l e f l u i d

    v a r y w i t h t i m e , i t i s u s e f u l t o d e f i n e a r e s i d e n c e t i m e

    f u n c t i o n E a n d a d i m e n s i o n l e s s r e s id e n c e t im e f u n c -

    t i o n E * . T h e r e s i d e n c e t i m e f u n c t i o n E h a s a m e a n i n g

    s i m i l a r to t h a t o f s te a d y - s t a t e s y st e m s . T h i s m e a n s

    t h a t , f o r a v o l u m e o f f l u i d e n t e r i n g t h e s y s t e m a t t = 0 ,

    E d t i s t h e f r a c t i o n o f f l u i d v o l u m e w h i c h l e a v e s t h e

    s y s t e m b e t w e e n t a n d t + d t . T h e d i m e n s i o n l e s s re s i -

    d e n c e t i m e f u n c t i o n E * i s d e f i n e d a s

    E V/Qo

    a n d

    p l o t t e d v s th e d i m e n s i o n l e s s t i m e 0 " , w h i c h e q u a l s

    S~(Qo/V)dt.

    U s i n g t h e p r e v i o u s d e f i n i ti o n s , d a t a o b t a i n e d i n

    a s e w a g e s y s te m a n d c o r r e s p o n d i n g t o t h r e e d i ff e r en t

    c u r v e s

    E =f(t)

    w i t h d i f f e r e n t f l o w r a n g e s , c a n b e

    t r a n s f o r m e d i n t o t h r e e v e r y s i m i l ar c u r v es

    E* =f(O*)

    w i t h t h e c o i n c i d e n c e o f t h e m a x i m a .

    C

    C o

    D

    E

    NOTATION

    t r a c e r c o n c e n t r a t i o n , k g / m 3

    i n i t ia l t r a ce r c o n c e n t r a t i o n , k g / m 3

    d i s p e r s i o n c o e f f i c i e n t , m 2 / s

    r e s i d en c e t i m e d i s t r i b u t i o n f u n c t i o n , s -

    d i m e n s i o n l e s s r e s id e n c e t i m e d i s t r i b u t i o n

    f u n c t i o n

    d i m e n s i o n l e s s r e s i d e n ce t i m e d i s t r i b u t i o n

    f u n c t i o n w h e n t h e s y s te m v o l u m e i s v a r i a b l e

    s y s t e m l e n g t h , m

    t r a c e r t o t a l a m o u n t , k g

    n u m b e r o f s t ir r ed t a n k s

    i n l e t f l o w , m 3 / s

    o u t l e t f l o w , m 3 / s

    s y s t e m s e c t i o n , m E

    t ime , s

    m e a n r e s i d en c e t i m e , s

    f l u i d v e l o c i t y , m / s

    s y s t em v o l u m e , m 3

    d i s t a n c e , m

    d i m e n s i o n l e s s l e n g t h

    Greek letters

    0 d i m e n s i o n l e s s t i m e [ e q . ( 2 1 ) ]

    0 * d i m e n s i o n l e s s t i m e [ e q . ( 2 6 ) ]

    R E F E R E N C E S

    Calu, M. P. and Lameloise, M . L. , 1986, In terpre ta t ion de

    mesures de dispers ion des temps de se jour da m des 6coule-

    ments de masse volumique variable . Appl ica t ion f i la

    mode l i s a t ion d ' evapora teu rs

    f i f l o t

    montant de sucrer ie .

    Entropie

    22 (128) 13-22.

    Den bigh, K. G. and T urner , J . C . R. , 1984, Chemical Reactor

    Theory.

    An Introduction,

    Cambridge Univers i ty Press ,

    Cambridge.

    Dickens, A. W., Mackley, M. R. and Williams, H. R., 1989,

    Experimenta l res idence t ime dis t r ibut ion measurements

    for unsteady flow in baffled tubes.

    Chem. Engno Sci. 44,

    1471-1479.

    Fan , L. T., Fan, L. S. and Nass ar, R . F., 1979, A stochastic

    model of the uns teady s ta te age dis t r ibut ion in a f low

    system.

    Chem. Engno Sci. 34,

    1172-1174.

    Fogler, H. S., 1992,

    Elements of Chemical Reaction Engineer-

    ing.

    Prent ice-Hal l , E nglewood Cliffs, NJ .

    From ent , G. F. an d Bischoff , K. B., 1979, Chemical Reactor

    Analysis and Design. Wiley, New York.

    Levenspiel, O., 1962,

    Chemical Reaction Engineering.

    Wiley,

    New York.

    Levenspiel, O., 1979, The

    Chemical Reactor Omnibook.

    O S U

    Book Stores, Corvallis , OR.

    Na um an, E. B., 1969, Res idence t ime dis t r ib ut ion theory for

    unsteady stirred tank reactors. Chem. Engng Sci. 24,

    1461-1470.

    Schwartz, S. E., 1979, Residence time in reservoirs und er

    non-s teady-s ta te condi t ions : appl ica t ion to a tmospheric

    SO2 and aerosol sulfate.

    Tellus

    31, 530-547.

    Smith, J . M., 1981,

    Chemical Engineering Kinetics.

    M c G r a w -

    Hill, New York.

    Vaccari, D. A., Fagedes, T. and Lo ngtin , J ., 1985, Ca lcula tion

    of me an ce ll res idence t ime for un s teady-s ta te ac t iva ted

    sludge systems.

    Biotechnol. Bioengng

    27, 695-703.

  • 8/12/2019 krd important

    8/8

    23O

    We s t e r t e r p , K . R . , Va n Swa a i j , W. P . M. a nd Be e na c ke r s ,

    A. A. C. M ., 1993, Chemical React or Design and Operation.

    Wiley, New York.

    A P P E N D I X A

    Cons i de r t he s y s t e m be t we e n t he d i s c ha r ge po i n t o f t he

    s a t u r a t e d s od i um s a l t a nd t he e x i t po i n t o f t he s e wa ge

    s ys t e m, whe r e i t wa s pos s i b l e t o me a s u r e t he f l ow a n d t a ke

    s a mpl e s f o r a na l y s i s . The me c ha n i c a l e ne r gy l o s s AF ( J / kg )

    a pp r ox i ma t e l y e qua l s g Az , whe r e g i s t he g r a v i t y a c c e l e r -

    a t i on ( m2 / s ) a nd Az t he d i f f e re nc e be twe e n t he he i gh t s o f t he

    t wo po i n t s c ons i de r e d ( m) . Cons e que n t l y f o r d i f f e r e n t f l ow

    r a t e s , t he me c ha n i c a l e ne r gy l o s s i s c ons t a n t . As s um i ng t ha t

    t he c i r c u l a t i on r e g i me i s t u r bu l e n t , i t c a n be wr i t t e n t ha t

    2f u 2 L

    A F = - - (A1)

    D~

    wh e r e f i s t he f r a c t i on f a c t o r , u i s t he m e a n ve l oc i ty ( m/ s ), L i s

    t he t o t a l l e ng t h be t we e n t he t wo po i n t s c ons i de r e d ( m) a nd

    D h i s t he hyd r a u l i c d i a m e t e r ( m) . The s e wa ge s y s t e m i s

    f o r me d by l a r ge c i r c u l a r c onc r e t e t ube s , i n wh i c h w a s t e wa t e r

    c i r c u l a te s oc c upy i ng on l y t he bo t t om o f t he cy l i nde r . F i gu r e

    F i g . 7. D i a g r a m o f the s e c t i on oc c up i e d by t he wa s t e wa t e r .

    J. FERNANDEZ-SEMPERE et al.

    7 s hows a d i a g r a m o f t he s e c t i on . As s umi ng t ha t t he a ng l e

    i s no t ve r y l a r ge , i t c a n be de duc e d t ha t ( whe r e c t i s i n

    r a d i a ns a nd h - ~ b i s a s s ume d)

    s in ~ ~ ct ~ h/R ~- b/R (A2)

    b 2 = a ( 2 R - a ) - a 2 R ( A 3)

    p e r i m e t e r = p = 2R (A4)

    sect ion = S = Rc t a (A5)

    hyd r a u l i c d i a me t e r D ~ = 4 S/p = 2a (A6)

    F r o m e q s ( A 2 )- ( A 6 ), o n e o b t a i n s

    / S 2 ~ 1 /3

    D h = 2 \ ~ - ~ j . (A 7)

    I n t r oduc i ng e q . ( A7) i n e q . ( A1) a nd a s s umi ng t ha t t he

    vo l um e o f t he s y s t e m c a n be c ons i de r e d V = SL, the follow-

    i ng e xp r e s s i on c a n be wr i t t e n :

    V = (L11 2R )l/s QO.TS. (A8)

    A s s u m i n g t h a t t h e f a c t o r f d o e s n o t c h a n g e c o n s i d e r a b l y

    wi t h t u r bu l e nc e , t h i s t he o r e t i c a l r e l a t i on a g r e e s w i t h t he

    e x p e r i m e n t a l p o t e n t i a l r e l a ti o n b e t w e e n t h e s y s t e m v o l u m e

    V a nd t he ou t l e t vo l um e t r i c fl ow , w i t h a n e xpo ne n t e qua l t o

    0 .7154, which i s very s imi lar to the theore t ica l va lue 0 .75

    from eq. (A8).

    APPEN D I X B

    O n c on s i de r i ng t he ( de fi ne d ) hyd r a u l i c d i a m e t e r a nd o t h e r

    r e l a t i ons c ons i de r e d i n e qs ( A2) - ( A7) , i t is de duc e d t ha t t he

    R e yn o l ds num be r i s a r oun d 6 000, 11 ,000 a nd 15 ,000 f o r r uns

    1, 2 and 3 , respectively . This m ean s tha t the regime i s prob-

    a b l y t u r b u l e n t i n t h e t r a n s i t i o n z o n e , f r o m l a m i n a r t o t u r b u -

    l e n t . Le ve ns p i e l ( 1962 ) p r e s e n t e d a va r i a t i on o f d i s pe r s i on

    coeff ic ients for f lu ids in p ipes , vs Reynolds number . From

    t h i s r e la t i on , i t c a n be de duc e d t ha t t he d i s pe r s i on c oe f f ic i e n t

    c a n d e c r e a s e w h e n t h e R e y n o l d s n u m b e r i n c r e a s e s i n t h e

    t u r bu l e n t r e g i me i n t he t r a ns i t i on z one . The va l ue s o f t he

    d i s pe r s i on c oe f fi c i en t s a r e h i gh , p r oba b l y a s a c ons e que nc e o f

    s t one s , me t a l s , o r o t he r obs t a c l e s i n s i de t he c onc r e t e t ube

    wh i c h c a us e a dd i t i on a l m i x i ng o f t he e l e me n t s o f f lu id .