chin pei tang ([email protected]) advisor : dr. venkat krovi

53
Chin Pei Tang May 3, 2004 Slide 1 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo Chin Pei Tang ([email protected]ffalo.edu) Advisor : Dr. Venkat Krovi Mechanical and Aerospace Engineering State University of New York at Buffalo Manipulability-Based Analysis of Cooperative Payload Transport by Robot Collectives

Upload: flo

Post on 22-Feb-2016

58 views

Category:

Documents


0 download

DESCRIPTION

Manipulability-Based Analysis of Cooperative Payload Transport by Robot Collectives. Chin Pei Tang ([email protected]) Advisor : Dr. Venkat Krovi Mechanical and Aerospace Engineering State University of New York at Buffalo. Part I. Part II. Agenda. Motivation & Our System - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 1 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Chin Pei Tang ([email protected])

Advisor : Dr. Venkat Krovi

Mechanical and Aerospace Engineering

State University of New York at Buffalo

Manipulability-Based Analysis of Cooperative Payload Transport by

Robot Collectives

Page 2: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 2 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Agenda

Motivation & Our System

Literature Survey & Research Issues

Kinematic Model

Twist-Distribution Analysis

Manipulability

Cooperative Systems

Conclusion & Future Work

Part I

Part II

Page 3: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 3 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Motivation

Why Cooperation?– Tasks are too complex– Distinct benefits – “Two hands are better than one”– Instead of building a single all-powerful system, build

multiple simpler systems– Motivated by the biological communities

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 4: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 4 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Our System

Flexible, scalable and modular framework for cooperative payload transport

Autonomous wheeled mobile manipulator– Differentially-driven wheeled mobile robots (DD-WMR)– Multi-link manipulator mounted on the top

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 5: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 5 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Features

Accommodate changes in the relative configuration

Detect relative configuration changes

Compensate for external disturbances

Using the compliant linkage

Using sensed articulation

Using redundant actuation of the bases

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 6: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 6 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Research Issues

Challenges– Nonholonomic (wheel) / holonomic (closed-loop)

constraints– Mobility / workspace increased (but also increases

redundancy)– Mixture of active/passive components

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 7: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 7 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Literature Survey

Applications of Robot Collectives– Collective foraging, map-building and reconnaissance

Coordination & Control– Formation Paradigm

• Leader-follower [Desai et. al., 2001]• Virtual structures [Lewis and Tan, 1997]• Mixture of approaches [Leonard and Fiorelli, 2001],

[Lawton, Beard and Young, 2003]

No physical interaction

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 8: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 8 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Literature Survey

Physical Interaction– Teams of simple robots

• box pushing [Stilwell and Bay, 1993], [Donald et. al., 1997]

• caging [Pereira et. al., 2002], [Wang & Kumar, 2002]

– Teams of mobile manipulators [Khatib et. al., 1996]

– Design modifications [Kosuge et. al., 1998], [Humberstone & Smith, 2000]

Upenn MARS Univ. of Alberta CRIPNASA Cooperative Rovers

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 9: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 9 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Literature Survey

Performance Measures– Single agent

• Service angle [Vinogradov et. al, 1971], conditioning [Yang and Lai, 1985], manipulability [Yoshikawa, 1985], singularity [Gosselin and Angeles, 1990], dexterity [Kumar and Waldron, 1981], etc.

– Multiple agents (Robot teams)• Social entropy – Measuring diversity of robots in a team

(Information-theoretic) [Balch, 2000]

• Kinetic energy – Left-invariant Riemannian metrics [Bhatt et. al., 2004]

Manipulability– Serial chain – Yoshikawa’s measure [Yoshikawa, 1985],

condition number [Craig and Salisbury, 1982], isotropy index [Zanganeh and Angeles, 1997]

– Closed chain [Bicchi and Prattichizza, 2000], [Wen and Wilfinger, 1999]

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 10: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 10 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Research Issues

Part I – Physical Cooperation– System level constraints– Motion planning strategy

Part II – Performance Evaluation & Optimization– Performance measures– Formulation that takes holonomic/nonholonomic

constraints and active/passive joints into account– Different actuation schemes– Optimal configuration

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 11: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 11 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Mathematical Preliminaries

( )20 0 1

F FMF

M

R dA SE

é ùê ú= Îê úê úë û

r

1M F F FM M MT A A-é ù é ù=ë û ë û &

1N FF N F NM F M FT A T A -é ù é ù é ùé ù=ë û ë û ë ûë û

00

0 0 0

z x z

z y x

y

vv v

v

w ww

é ù é ù-ê ú ê úê ú ê úÛê ú ê úê ú ê úê ú ê úë ûë û

Twist Matrix Twist Vector

Similarity Transformation

Body-fixed Twist

Homogeneous Matrix Representation

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 12: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 12 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Kinematic Model

Mobile Platform

cos sinsi0 0 1n cosF

MAxy

ffff

é ùê úê ú= ê úê úê úê û

-

úë

( ) ( ), 2FF FM MA R Sd E= Î%

1M F F FM M MT A A-é ù=ë û &

Reaching any point

in the plane

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 13: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 13 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Kinematic Model

cos sinsi

00

0 0 0n cosM F

M

x y

x yT

ff

ff

f

f

+é ù-ê úê úé ù ê ú=ë û ê úê úê úë

- +

û

&&

& && &

sin cos 0x yff- + =& &cos sin Mx y vff+ =& &

NonholonomicConstraints

Mobile Platform

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 14: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 14 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Kinematic Model

00

0 0 00M

M FM

v

T

f

f

é ù-ê úê úé ù ê ú=ë û ê úê úê úë û

&&

sin cos 0x yff- + =& &cos sin Mx y vff+ =& &

NonholonomicConstraints

Mobile Platform

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 15: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 15 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Kinematic Model

0 1 0 0 0 11 0 0 0 0 00 0 0 0 0 0

M MvM

M M

M FM M

TT

vT

f

f

é ù é ùê úê ú ë ûë û

é ù é ù-ê ú ê úê ú ê úé ù= +ê ú ê úë û ê ú ê úê ú ê úê ú ê úë û ë û&

1444442444443 14444 44443

&

2

Mobile Platform

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 16: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 16 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Kinematic Model

1 1 1 1

1 1 1 1

cos sin cossin cos sin0 0 1

MA

LA L

q q qq q q

é ù-ê úê ú= ê úê úê úê úë û2 2 2 2

2 2 2 2

cos sin cossin cos sin0 0 1

AB

LA L

q q qq q q

é ù-ê úê ú= ê úê úê úê úë û3 3 3 3

3 3 3 3

cos sin cossin cos sin0 0 1

kB

E

LA L

q q qq q q

é ù-ê úê ú= ê úê úê úê úë û

k kM M A B

A BE EA A A A=Manipulator

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 17: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 17 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Kinematic Model

1 2 3kk kk

k k

EE EEM M A BA BE ET T T Tq q qé ùé ù é ùé ù= + +ë ûë û ë ûë û& & &

1E M M ME E ET A A-é ù=ë û &

Manipulator

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 18: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 18 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Kinematic Model

kE tf&%k

M

Evt% 1

kE tq&% 2

kE tq&% 3

kE tq&%1 23 2 3

1 23 2 3 3

1L S L S

LC L C L

é ùê úê ú+ê úê úê ú+ +ê úë û123

123

0CS

é ùê úê úê úê úê ú-ê úë û1 23 2 3

1 23 2 3 3

1L S L S

LC L C L

é ùê úê ú+ê úê úê ú+ +ê úë û2 3

2 3 3

1L S

L C L

é ùê úê úê úê úê ú+ê úë û 3

10L

é ùê úê úê úê úê úê úë û

Twist Vectors

Assembled

1 2 31

2

3

k k k k

k

kk

M

E

M

E E EE FE

Ev

v

t t t tt t q q qf

f

q

q

q

é ùê úê úê úê úé ùê úé ù= ê úê úë û ë ûê úê úê úê úê úë û

& & & &&

%%

&

% % &&

% %

( )kE J h%

Jacobian

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 19: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 19 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Mobility Verification

- Verify that arbitrary end-effector motion is feasible.

- Partitioning of feasible motion distribution:- Actively-realizable

(using wheeled bases)- Passively-accommodating

(using articulations)- Configuration dependent

partitioning - Steer the actively-realizable

vector-fields

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 20: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 20 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Twist-Distribution Analysis

Partition the Jacobian

pa

E FE T T pa JJt h hé ùé ù= +ë éë û úû ùêë û& &

%%%

1 2 3

k k k

p

E E ETJ t t tq q q

é ù= ê úë û& & &% % %

1

2

3

p

q

h q

q

é ùê úê úê ú= ê úê úê úë û

&&&

% &

Passive Distributions

k k

a M

E ET vJ t tf

é ù= ê úë û&% %aMvf

hé ùê ú= ê úê úë û

&&%

Active Distributions

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 21: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 21 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Twist-Distribution Analysis

Can any arbitrary twist be realized using only the active distribution?

Feasibility check

a

ETG J té ùé ù= ê úë ûë ûM % ( ) ( )aTrank G rank J=

Not constructive

ReciprocalWrench

Alternate constructive approach

1 23 2 3 123

1 23 2 3 3 123

1 0aTJ L S L S C

LC L C L S

é ùê úê ú= +ê úê úê ú+ + -ê úë û

1 1 2 12 3 123

123

123

a

LC L C L Cw S

C

é ù- - -ê úê ú= ê úê úê úê úë û%

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 22: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 22 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Condition:

Transform an arbitrary twist from {Ek} to {M}:

0The Motion Planning Strategy

Given arbitrary twistTE

Ez Ex Eyt v vwé ù= ê úë û%

To understand this condition better:

Achieved by aligning the forward travel direction with the direction of the velocity

Twist-Distribution Analysis

[ ] [ ] [ ][ ] [ ] [ ]

1 1 2 12 3 123 123 123

1 1 2 12 3 123 123 123

EzM F

E Ez Ex Ey

Ez Ex Ey

t L S L S L S C v S v

LC L C L C S v C v

w

w

w

é ùê úê úé ù ê ú= + + + -ë û ê úê ú- - - + +ê úë û%

[ ] [ ] [ ]1 1 2 12 3 123 123 123 0Ez Ex EyLC L C L C S v C vw- - - + + =

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 23: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 23 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Manipulability

Jacobian Matrix

( )1 1E

m T nm nt J q h´ ´´

é ù= ë û &% % %

{ }: , 1E EV Tt t Je h h= = =& &% % %%

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

1n

nh ´ Î& ¡% 1

E mmt ´ Î ¡%

( )T m nm n

J q ´´

é ùë ûÎ

Joint manipulation rates space Task velocity space

Manipulability is defined as the measure of the flexibility of the manipulator to transmit the end-effector motion in response to a unit norm motion of the rates of the active joints in the system

Page 24: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 24 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Manipulability – SVD

Singular Value Decomposition

TTJ VU= S

T Tm mU U UU I ´= =

T Tn nV V VV I ´= =

1 2

1 2

, , , ,0, ,0m n kn kk

k

diag s s s

s s s

´-

æ ö÷ç ÷S = ç ÷ç ÷÷çè ø³ ³ ³

L L144244314444244443L

( )1 1E

m T nm nt J q h´ ´´

é ù= ë û &% % %

{ }: , 1E EV Tt t Je h h= = =& &% % %%

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

TT TJ J

TT TJ J

Page 25: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 25 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

-3 -2 -1 0 1 2 3-3

-2

-1

0

1

2

3

Y

X

Y X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Manipulability ellipsoids of Two Link at F frame

x (m)

y (m

)

RR Manipulator Example

1 2L m= 2 1L m=

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

11 1 2 12 2 12

21 1 2 12 2 12

1 1E

E

E

X L S L S L SLC L C L CY

q

q

é ù é ùQê ú ê úé ùê ú ê úê úê ú= - - -ê úê úê ú ê úê úê ú ë ûê ú+ê ú ê úë ûë û

&&

&&

&

Page 26: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 26 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Manipulability Indices

Yoshikawa’s Measure (Volume of Ellipsoid)

Condition Number

Isotropy Index

( ) ( ) ( ) 1 2det detT TY T T T kJ J J s s sG = = SS = × ×L

( ) 1CN T

k

J ss

G =

( )1

kI TJ

ss

G =

Not able to distinguish the ratio of major/minor axes of ellipsoid

Value goes out of bound at singular

position

Better numerical behavior0 1I£ G £

1 CN£ G £ ¥

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 27: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 27 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Yoshikawa’s Measure

Condition Number

Isotropy Index

( ) ( )det TY T T TJ J JG =

( ) 1CN T

k

J ss

G =

( )1

kI TJ

ss

G =

Adopted measure

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

RR Manipulator Example

Page 28: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 28 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Manipulability (Closed-Loop)

a p

T T Th h hé ù= ê úë û% % %

( ) ETJ th h=& %%%

( ) 0CJ h h=& %%%

{ }: , 1, 0E EV T a Ct t J Je h h h= = = =& & &% % %% %

Generalized Coordinates

Forward Kinematic

Closed-Loop Kinematic Constraints

Not easy to compute

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 29: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 29 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Manipulability (Closed-Loop)

a pT T TJ J Jé ù= ê úë û

a pC C CJ J Jé ù= ê úë û

a p

ET a T pJ J th h+ =& & %% %

0a pC a C pJ Jh h+ =& & %% %

1p ap C C aJ Jh h-=-& &

% % p a pp C C a CJ J Jh h x+=- + %& &%% %

p p

ET a T Ct J J Jh x= + %&% %%

a p C apT T T CJ J J J J+= -

{ }: , 1E EV T a at t Je h h= = =& &% % % %

Partition according to active/passive manipulation variable rates

Exact Actuation Redundant Actuation

Manipulability Jacobian

Solved explicitly

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

0p pC CJ J =%

%

{ }: , 1, 0E EV T a Ct t J Je h h h= = = =& & &% % %% %

Page 30: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 30 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Cooperative Model

Team up

End-effectors need to be re-aligned

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 31: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 31 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Kinematic Model (with end-effector offset angle)

cos sin 0sin cos 00 0 1

k

k kE

k kEAd dd d

é ù-ê úê ú= ê úê úê úê úë û

( ) ( )( ) ( )

1 2 3 2 3 3

1 2 3 2 3 3

1sin sin sincos cos cos

k k k

k k k

L L L

L L L

d q q d q d

d q q d q d

é ùê úê úê ú= - - - - - -ê úê ú- - + - +ê úë û

( )( )

1 2 3

1 2 3

0cossin

k

k

d q q q

d q q q

é ùê úê úê ú= - - -ê úê ú- - -ê úë û

( ) ( )( ) ( )

1 2 3 2 3 3

1 2 3 2 3 3

1sin sin sincos cos cos

k k k

k k k

L L L

L L L

d q q d q d

d q q d q d

é ùê úê úê ú= - - - - - -ê úê ú- - + - +ê úë û

( )( )

2 3 3

2 3 3

1sin sincos cos

k k

k k

L L

L L

d q d

d q d

é ùê úê úê ú= - - -ê úê ú- +ê úë û3

3

1sincos

k

k

LL

dd

é ùê úê ú= -ê úê úê úê úë û

Similarity Transformation

1

Etq&%

2

Etq&% 3

Etq&%

Etf&% M

Evt%

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 32: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 32 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Simulation

Step 1: Identify

Step 2: Construct manipulability Jacobian

Step 3: Compute isotropy index

Case I – MB static, R1 actuatedCase II – MB static, R2 actuatedCase III – MB moves, R1 & R2 passiveCase IV – MB moves, R1 lockedCase V – MB moves, R2 locked

TE E Ex yt v vé ù= ê úë û%

ah&% ph&% aTJ pTJ aCJ pCJa p

ET a T pJ J th h+ =& & %% %

0a pC a C pJ Jh h+ =& & %% %

a p C apT T T CJ J J J J+= -

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 33: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 33 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Simulation Parameters (3-RRR Nomenclature)

-1 0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

Y

X

Location of MB and geometry of platform

x (m)

y (m

)

( ) ( )1 1, 0,0I Ix y = ( ) ( )1 1, 3.4641,2II IIx y = ( ) ( )1 1, 0,4II I II Ix y =330Id = ° 210IId = ° 90I I Id = °1Iel = 1I Iel = 1II Iel =

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 34: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 34 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Case I: MB static R1 actuated

1 1 1TI II I I I

ah q q qé ù= ê úë û& & &&

%2 3 2 3 2 3

TI I I I I I II I I I Iph q q q q q qé ù= ê úë û

& & & & & &&%

10 0

a

E ITJ tqé ù= ê úë û&% % %

2 30 0 0 0

p

E I E ITJ t tq q

é ù= ê úë û& &% % % % % %

1 1

1 1

00a

E I E II

C E I E III

t tJ

t tq q

q q

é ù-ê ú= ê ú-ê úë û

& &

& &

% % %% % %

2 3 2 3

2 3 2 3

0 00 0p

E I E I E II E II

C E I E I E III E II I

t t t tJ

t t t tq q q q

q q q q

é ù- -ê ú= ê ú- -ê úë û

& & & &

& & & &

% % % % % %% % % % % %

Generalized Coordinates

Forward Kinematics

General Constraints

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 35: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 35 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Case Study I-A1 2k kL L¹

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x (m)

y (m

)

Contour plot

0.1

0.10.1

0.1

0.1

0.1

0.10.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.10.1

0.1

0.10.2

0.2

0.2 0.20.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.3

0.30.30.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.40.4

0.5

0.5

0.50.5

0.5

0.5

0.5

0.50.

5

0.5

0.5

0.5

0.60.6

0.6

0.6

0.6

0.6

0.6

0.6

0.6

0.6

0.6

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.80.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.90.9

0.9

0.9

0.9

0.9

0.90.9

1 2kL m= 2 1.5kL m= 3 1kL m=

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 36: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 36 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Case Study I-B1 2k kL L=

-0.5 0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

3

3.5

x (m)

y (m

)

Contour plot

0.1

0.1

0.1 0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.2

0.20.

2

0.2

0.2

0.2

0.2

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.30.3

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.50.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.6

0.6

0.6

0.6

0.6

0.6

0.6

0.6

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.8

0.8

0.8

0.8

0.8

0.9

1 1.5kL m= 2 1.5kL m= 3 1kL m=

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 37: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 37 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Case II: MB static, R2 actuated

20 0

a

E ITJ tqé ù= ê úë û&% % %1 3

0 0 0 0p

E I E ITJ t tq q

é ù= ê úë û& &% % % % % %

2 2

2 2

00a

E I E II

C E I E III

t tJ

t tq q

q q

é ù-ê ú= ê ú-ê úë û

& &

& &

% % %% % %

1 3 1 3

1 3 1 3

0 00 0p

E I E I E II E II

C E I E I E III E III

t t t tJ

t t t tq q q q

q q q q

é ù- -ê ú= ê ú- -ê úë û

& & & &

& & & &

% % % % % %% % % % % %

2 2 2TI II I I I

ah q q qé ù= ê úë û& & &&

%1 3 1 3 1 3

TI I I I I I I I I I I Iph q q q q q qé ù= ê úë û

& & & & & &&%

Generalized Coordinates

Forward Kinematics

General Constraints

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 38: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 38 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Case II: MB static, R2 actuated

-0.5 0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

3

3.5

x (m)

y (m

)

Contour plot

0.10.1

0.10.

1

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.3

0.3

0.3

0.3

0.3

0.4

0.4

0.4

0.4 0.5

0.5

0.5

0.6

0.6

0.6

0.7

0.7

0.8

0.9

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 39: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 39 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Case III: MB moves, R1 and R2 passive

TI I I I I I I I I II Ia M M Mv v vh ff fé ù= ê úë û

& & &&%1 2 3 1 2 3 1 2 3

TI I I I I I I I I I I I I I I I I Iph q q q q q q q q qé ù= ê úë û

& & & & & & & & &&%

0 0 0 0a M

E I E IT vJ t tf

é ù= ê úë û&% % % % % %

1 2 30 0 0 0 0 0

p

E I E I E ITJ t t tq q q

é ù= ê úë û& & &% % % % % % % % %

0 00 0

M M

a

M M

E I E I E II E IIv v

C E I E I E III E II Iv v

t t t tJ

t t t tff

ff

é ù- -ê ú= ê ú- -ê úë û

& &

& &

% % % % % %% % % % % %

1 2 3 1 2 3

1 2 3 1 2 3

0 0 00 0 0p

E I E I E I E II E II E II

C E I E I E I E III E II I E II I

t t t t t tJ

t t t t t tq q q q q q

q q q q q q

é ù- - -ê ú= ê ú- - -ê úë û

& & & & & &

& & & & & &

% % % % % % % % %% % % % % % % % %

Generalized Coordinates

Forward Kinematics

General Constraints

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 40: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 40 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Self-Motion0

a pC a C pJ Jh h+ =& & %% %p a pp C C a CJ J Jh h x+=- + %& &

%% %

Feasible motions of passive joints due to the actuations butnot violating constraints

Feasible self-motion when all the active

joints locked

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

0p pC CJ J =%

%m n´

m n<( )n n m´ -

n m-Underconstrained

Dimension of self-motion manifoldLock this number

of joints

Page 41: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 41 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Self-Motion

1 2 3 1 2 3

1 2 3 1 2 3

0 0 00 0 0p

E I E I E I E II E II E II

C E I E I E I E II I E II I E III

t t t t t tJ

t t t t t tq q q q q q

q q q q q q

é ù- - -ê ú= ê ú- - -ê úë û

& & & & & &

& & & & & &

% % % % % % % % %% % % % % % % % %

6 9´ 6m= 9n =9 6 3n m- = - = Lock this number

of joints

2 Cases:- Locking R1- Locking R2

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 42: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 42 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Case IV: MB moves, R1 locked

TI I I I I I I II II Ia M M Mv v vh ff fé ù= ê úë û

& & &&%

2 3 2 3 2 3TI I I I I I II I I I I

ph q q q q q qé ù= ê úë û& & & & & &&

%

0 0 0 0a M

E I E IT vJ t tf

é ù= ê úë û&% % % % % %2 3

0 0 0 0p

E I E ITJ t tq q

é ù= ê úë û& &% % % % % %

0 00 0

M M

a

M M

E I E I E II E IIv v

C E I E I E III E IIIv v

t t t tJ

t t t tff

ff

é ù- -ê ú= ê ú- -ê úë û

& &

& &

% % % % % %% % % % % %

2 3 2 3

2 3 2 3

0 00 0p

E I E I E II E II

C E I E I E III E III

t t t tJ

t t t tq q q q

q q q q

é ù- -ê ú= ê ú- -ê úë û

& & & &

& & & &

% % % % % %% % % % % %

Generalized Coordinates

Forward Kinematics

General Constraints

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 43: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 43 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Case IV: MB moves, R1 locked

-0.5 0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

3

3.5

x (m)

y (m

)

Contour plot

0.1

0.1

0.1 0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.3

0.3

0.3

0.30.

3

0.3

0.3

0.3

0.3

0.3

0.40.4

0.4

0.4

0.4

0.4

0.4

0.40.4

0.4

0.4

0.50.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.60.6

0.6

0.6

0.6

0.6

0.6

0.6

0.7

0.70.7

0.7

0.7

0.7

0.7

0.7

0.8

0.8

0.80.8

0.8

0.90.9

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 44: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 44 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Case V: MB moves, R2 locked

TI I I I I I I I I II Ia M M Mv v vh ff fé ù= ê úë û

& & &&%

1 3 1 3 1 3TI I II I I II I I I I

ph q q q q q qé ù= ê úë û& & & & & &&

%

0 0 0 0a M

E I E IT vJ t tf

é ù= ê úë û&% % % % % %

1 30 0 0 0

p

E I E ITJ t tq q

é ù= ê úë û& &% % % % % %

0 00 0

M M

a

M M

E I E I E II E IIv v

C E I E I E III E IIIv v

t t t tJ

t t t tff

ff

é ù- -ê ú= ê ú- -ê úë û

& &

& &

% % % % % %% % % % % %

1 3 1 3

1 3 1 3

0 00 0p

E I E I E II E II

C E I E I E III E II I

t t t tJ

t t t tq q q q

q q q q

é ù- -ê ú= ê ú- -ê úë û

& & & &

& & & &

% % % % % %% % % % % %

Generalized Coordinates

Forward Kinematics

General Constraints

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 45: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 45 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Case V: MB moves, R2 locked

-0.5 0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

3

3.5

x (m)

y (m

)

Contour plot

0.1 0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.20.2

0.2

0.2

0.2

0.2

0.2

0.3

0.3 0.3

0.3

0.3

0.3

0.30.4

0.4

0.4

0.4

0.4

0.4

0.4

0.5

0.5

0.5

0.50.5

0.5

0.6

0.6

0.6

0.6

0.6 0.7

0.7

0.7

0.8

0.8

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 46: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 46 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Case Study – Configuration Optimization

( )max IqqG

% %T

E Eq x yé ù= ê úë û%

( )max IhhG

% %TI II I I Ih q q qé ù= ê úë û% % %% 1 2 3

Tk k k kq q q qé ù= ê úë û% % % %Subject to: Closed-Kinematic Loop Constraints

ConstrainedOptimization

Problem

UnconstrainedOptimization

Problem

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 47: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 47 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Configuration Optimization – Case IV

-1 0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

Y

X

Optimal Configuration (Case IV)

x (m)

y (m

)

( ) ( ), 1.4205,2.1885E Ex y =

* 1.0000IG =-0.5 0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

3

3.5

x (m)

y (m

)

Contour plot

0.1

0.1

0.1 0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.40.4

0.4

0.4

0.4

0.4

0.4

0.40.4

0.4

0.4

0.50.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.60.6

0.6

0.6

0.6

0.6

0.6

0.6

0.7

0.70.7

0.7

0.7

0.7

0.7

0.7

0.8

0.8

0.80.8

0.8

0.90.9

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 48: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 48 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

-1 0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

Y

X

Optimal Configuration (Case IV)

x (m)

y (m

)

Configuration Optimization – Case V

( ) ( ), 0.8660,1.5000E Ex y =

* 0.8660IG =-0.5 0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

3

3.5

x (m)

y (m

)

Contour plot

0.1 0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.20.2

0.2

0.2

0.2

0.2

0.2

0.3

0.3 0.3

0.3

0.3

0.3

0.30.4

0.4

0.4

0.4

0.4

0.4

0.4

0.5

0.5

0.5

0.50.5

0.5

0.6

0.6

0.6

0.6

0.6 0.7

0.7

0.7

0.8

0.8

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 49: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 49 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Conclusion

Modular Formulation

Motion-Distribution Analysis

Evaluation of Performance Measures

Manipulability Jacobian Matrix Formulation

Effect of Different Actuation Schemes

Optimal Configuration Determination

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 50: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 50 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Future Work

Global Manipulability

Force Manipulability

Singularity Analysis

Decentralized Control

Redundant Actuation

IW

W

dW

dWm

G= òò

2,min2

,max

I

I

sæ öG ÷ç ÷=ç ÷ç ÷÷çGè ø

1 1T

n mm nJ Ft ´ ´´é ù= ë û% %

Introduction Model Distribution Analysis Manipulability Cooperative System Conclusion

Page 51: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 51 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Thank You!

Acknowledgments:Dr. V. KroviDr. T. Singh

Dr. J. L. Crassidis& all the audience…

Page 52: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 52 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Twist Matrix as Velocity Operator

1

0 0 0

E EF FE E EF F F

E E E

vdT A Adt

-é ùé ù é ùWé ù ê úë û ë ûé ù é ù é ù= =ê ú ê úë û ë û ë ûê úë û ê úë û

%

00zE F

Ez

ww

-é ùê úé ùW =ë û ê úê úë û

xE FE

y

vv v

é ùé ù ê ú=ë û ê úë û%

zE FEt v

wé ùé ù ê ú=ë û ê úë û% %

1 2

1 11 21 21 1 2 2

N

E EF E E E E NE E E E

T T T

T A T A A T A T- -é ù é ù é ù é ù é ù é ùé ù é ù= + + +ë û ë ûë û ë û ë û ë û ë û ë ûL14444444244444443 14444444244444443 1442443

Page 53: Chin Pei Tang (chintang@eng.buffalo) Advisor : Dr. Venkat Krovi

Chin Pei Tang May 3, 2004Slide 53 of 51 Automation, Robotics and Mechatronics Lab, SUNY at Buffalo

Single Module Payload Transport

T

a Mvh fé ù= ê úë û&

%a M

E ET vJ t tf

é ù= ê úë û&% %a

ET at J h= &% %