document20

Upload: wahyu-mey-r

Post on 14-Oct-2015

10 views

Category:

Documents


0 download

DESCRIPTION

ilmiah

TRANSCRIPT

20. Heat transfer1. PERPINDAHAN PANAS (HEAT TRANSFER) Perpindahan panas merupakan salah satu dari perpindahan energi. Perpindahan panas dapat dibagi menjadi 3 jenis, yaitu konduksi, konveksi, dan radiasi. Perpindahan panas ini digunakan dalam berbagai macam aplikasi salah satunya penghitungan beban sebuah ruangan atau gedung dalam perancangan Air Conditioner.2. KONDUKSIKonduksi merupakan perpindahan panas tanpa adanya perpindahan zat. Biasanya konduksi terjadi pada zat padat. Contohnya adalah jika kita panaskan sebuah logam di salah satu ujungnya, maka di ujung lainnya akan terasa panas juga.Hal ini dapat terjadi karena adanya getaran dalam zat padat tersebut. Awalnya molekul-molekul logam yang dipanaskan bergetar terlebih dahulu, namun getaran molekul ini merambat ke arah yang belum bergetar (kea rah ujung lainnya) sehingga bagian yang tidak dipanaskan ikut panas juga.Besarnya perpindahan panas dengan cara konduksi dipengaruhi oleh luas lermukaan (A), panjang (l), dan perbedaan suhu antara kedua ujung. Semakin besar luas permukaan maka semakin besar perpindahan panasnya begitu pula dengan perbedaan suhu. Namun, semakin panjang benda tersebut semakin kecil perpindahan panasnya. Dengan kata lain Perpindahan panas berbanding lurus dengan Luas dan Perbedaan suhu, berbanding terbalik dengan panjang/tebal benda.

Atau dapat dituliskan seperti :

3. KONVEKSIKonveksi merupakan perpindahan panas melalui perpindahan molekul. Biasanya terjadi pada zat yang mengalir (fluida), bias gas atau zat cair. Konveksi dapat terjadi karena adanya perpindahan molekul yang lebih panas. Zat alir (fluida) yang memiliki suhu lebih tinggi massa jenisnya lebih kecil dan menjadi lebih ringan dari pada zat tersbut yang lebih dingin. Akibatnya zat yang panas itu akan bergerak keatas. Contohnya adalah pada saat mendidihkan air, di bagian bawah lebih panas dari pada bagian atas, sehingga air yang berada dibawah bergerak ke atas dan air yang lebih dingin menggantikan posisi dibawah.4. RADIASIBerbeda dengan konveksi dan konduksi, radiasi tidak memerlukan media perantara apapun untuk perpindahan panasnya. Selama ada perbedaan suhu maka ada pada benda tersebut. Besarnya perpindahan panas secara radiasi adalah:

22. Convected energy Konveksi adalah perpindahan panas melalui suatu zat perantara (umumnya zat cair) dengan disertai perpindahan partikel-partikel zat tersebut. Fluida adalah zat cair (contohnya air) atau pada gas (contohnya udara). Contohnya: Ketika bunda sedang memasak air, air yang berada di bagian atas permukaan di dalam panci dapat menjadi panas karena panas yang berasal dari air yang berada di bawah permukaan mengalir ke bagian atas permukaan air. Contoh lainnya adalah angin. Angin adalah udara yang bergerak atau mengalir, dari tempat yang dingin ke tempat yang lebih panas.

2.4 Lumped formulationLumped formulation atau disebut Analisis Sistem Lumped. Analisis sistem lumped secara umum terjadi pada proses konduksi, yang dapat digunakan setiap kali konduksi panas dalam obyek, yang lebih cepat daripada konduksi panas di seluruh batas dari objek. Analisis sistem lumped ini adalah metode yang sesuai perkiraan mengurangi satu aspek sistem konduksi sementara (yang di dalam objek) ke salah satu bagian yang setara stabil sistem (yakni, diasumsikan bahwa suhu di dalam obyek benar-benar sama, meskipun nilai tersebut mungkin perubahan dalam waktu). Dalam metode ini, yang dikenal dengan istilah nomor Biot dihitung, yang didefinisikan sebagai rasio tahan panas mentransfer seluruh objek dari perbatasan dengan seragam yang berbeda suhu, ke konduktif tahan panas di dalam objek. Bila panas tahan panas yang ditransfer ke dalam obyek yang lebih rendah dari tahan panas yang sepenuhnya yg disebarkan dalam objek, Biot angka yang kecil, dan perkiraan dari spatially seragam suhu di dalam obyek dapat digunakan. Karena ini merupakan cara perkiraan, Biot nomor yang harus kurang dari 0,1 untuk perkiraan yang akurat dan analisis heat transfer. Sekalipun Biot nomor tidak kurang dari 0,1, analisis dapat terus, tetapi ketepatan hasil mengurangi. Mode ini analisis telah diterapkan untuk ilmu forensik untuk menganalisa waktu kematian manusia. Juga dapat diterapkan ke HVAC (heating, ventilating dan udara, atau membangun iklim kontrol). 2.6 Shaft work (Kerja poros)Dalam memudahkan mendapatkan bentuk umum dari persamaan energi proses alir, Pertimbangkan suatu proses alir seperti pada Gambar berikut.

Gambar . Proses Alir Steady-stateSuatu fluida mengalir melalui peralatan-peralatan seperti tersebut pada gambar, dari titik inlet (1) ke titik outlet (2). Pada titik inlet (1) kondisi fluida ditandai dengan subskrip 1. Pada titik ini pula fluida berada pada ketinggian z1 dari bidang datumnya, dengan kecepatan v1, memiliki volume spesifik v1, tekanan P1 dan energi dalam (U1). Dengan cara yang sama, untuk titik outlet ditandai dengan subskrip 2. Sistem dianalisis dalam besaran per satuan massa fluida. Perubahan energi per satuan massa untuk sistem tersebut melibatkan perubahan energi kinetik, potensial dan energi dalamnya. Keterangan : sehingga secara umum, persamaan energi untuk proses alir steady-state dapat ditulis sebagai : m(u2 u1) + 1/2 m(u22 u12)+ mg(z2 z1) =Q W (1)W pada persamaan (1) menyatakan semua kerja yang dilakukan oleh fluida, dan nila kerja (W) tesebut merupakan jumlah dari Kerja Poros (Shaft Work, Ws) dan Kerja hasil kali PV dari fluida yang mengalir. kerja poros (Ws) adalah kerja yang yang dilakukan atau diterima oleh fluida yang mengalir melalui suatu peralatan sehingga dihasilkan suatu kerja mekanik (misalnya dapat memutar suatu poros atau menggerakan baling-baling pada turbin dan banyak lagi lainnya). Secara matematis dapat dituliskan :W = Ws + P2V2 P1V1 (2)selanjutnya substitusikan persamaan (2) ke dalam persamaan (1), sehingga diperoleh :m(u2 u1) + 1/2 m(u22 u12)+ mg(z2 z1) = Q [Ws + P2V2 P1V1] (3)diketahui bahwa, V2 = mv2 dan V1 = mv1, dengan menyusun kembali persamaan akan diperoleh : m[(u2 + P2V2) (U1 + P1V1)] + mg(z2 z1) = Q Ws (4)oleh karena h = u + P V, maka persamaan (2) menjadi : m(h2 h1) + 1/2 m(u22 u12)+ mg(z2 z1) = Q Ws (5) atau (6)Persamaan (6) merupakan persamaan umum proses alir steady-state. Untuk kebanyakan pemakaian di dalam thermodinamika, perubahan energi kinetik dan energi potensial aliran relatif lebih kecil (sering diabaikan) jika dibandingkan dengan energi bentuk lainnya, sehingga persamaan (6) menjadi : , atau (7)dalam hal ini, diketahui bahwa enthapi (h) adalah fungsi keadaan, sehingga ia punyai nilai tertentu pada kondisi P dan T tertentu pula, untuk itu sering juga nilai enthalpi ini dapat dilihat pada Tabel-tabel data thermodinamika untuk zat-zat murni tertentu.2.8 Fluid Flow fieldFluida adalah zat yang dapat mengalami perubahan bentuk secara kontinu bila terkena tegangan geser walaupun relatif kecil. Gaya geser adalah komponen gaya yang menyinggung permukaan dan jika dibagi dengan luas permukaan tersebut menjadi tegangan geser rata-rata pada permukaan itu.Transportasi fluida dalam teknik kimia jauh lebih mudah daripada padatan. Karena itu ahli teknik kimia berupaya sedapat mungkin untuk dapat melakukan transportasi bahan dalam bentuk cairan, larutan atau suspensinya. Bila hal itu tidak mungkin barulah mereka melakukan pengangkutan bahan padat dalam bentuk padat. Walaupun begitu masih diusahakan cara tambahan untuk memudahkan pengangkutan, misalnya menghaluskan padatan lalu diangkut dengan aliran gas atau cairan seperti operasi fluidisasi. Hidrodinamika yang menjadi dasar aliran fluida dalam Operasi Teknik Kimia, dibagi menjadi tiga pokok bahasan :1. yang berhubungan dengan aliran fluida dalam saluran sehingga aliran terarah mengikuti bentuk saluran (internal flow), misalnya : pemompaan cairan, kompresi gas dan aliran fluida dalam kanal terbuka.2. Yang membahas masalah aliran fluida lewat di sekitar benda padat (eksternal flow), misalnya : sedimentasi dan pemisahan dengan sentrifugasi dan pencampuran.3. Masalah campuran dari kedua hal diatas, seperti fluidisasi dan aliran dua fase gas-cair.Selama fluida bergerak, harus selalu ada gaya geser yang bekerja terhadap fluida. Hal ini dilakukan dengan penambahan energi dari luar. Tanpa penambahan energi dari luar, aliran fluida akan terhenti. Jumlah energi yang diperlukan untuk mempertahankan aliran ini dianggap sebagai energi yang hilang, karena tidak dapat diambil sebagai energi yang bermanfaat. Dalam aliran fluida di dalam saluran, energi yang hilang disebut Head loss. Pada dasarnya faktor-faktor yang mempengaruhi aliran fluida adalah yang menyangkut dengan sifat fisik dari fluida yang dapat didefinisikan pada :1. tekanan2. temperatur3. densitas4. viskositasTransformasi dalam sistem perpipaan yang kompleks akan mengikuti hukum kekekalan energi.1) Viskositas FluidaFluida adalah benda yang dapat mengalami perubahan bentuk secara terus menerus karena gaya gesek yang bekerja terhadapnya. Sifat yang erat hubungannya dengan definisi ini adalah viskositas. Harga viskositas fluida mungkin dipengaruhi oleh besar dan lama aksi gaya yang bekerja terhadapnya. Viskositas fluida juga dipengaruhi oleh tekanan dan temperatur.2) Densitas FluidaDisamping viskositas, sifat fluida yang penting lainnya adalah densitas (masa persatuan volume). Seperti viskositas, karakteristik gas dan cairan dalam sifat densitas ini bebeda satu dengan lainnya. Densitas gas sangat dipengaruhi oleh tekanan dan temperaturnya, karena itu gas juga disebut fluida termampatkan (compressible fluid). Hubungan antara densitas dengan tekanan dan temperatur gas banyak dibahas dalam bidang termodinamika, misalnya Hukum Gas Ideal dan persamaan Van Der Waals. Densitas cairan sedikit sekali dipengaruhi oleh tekanan dan temperatur, karena itu cairan disebut juga fluida tak termampatkan (incompressible fluid). Bedasarkan sifat kemampatan ini, aliran fluida dibagi menjadi dua, yaitu aliran fluida termampatkan dan tak termampatkan. Seringkali bila perubahan temperatur dan tekanan relatif kecil, permasalahan aliran gas diselesaikan dengan cara untuk fluida tak termampatkan.3) Neraca MassaFluida dinamik adalah fluida bergerak. Umunya fluida bergerak dari satu tempat ke tempat yang lain dengan suatu alat mekanik seperti pompa atau blower, oleh perbedaan gravitasi, atau dengan tekanan, dan mengalir melalui sistem perpipaan atau alat proses.4) Neraca Energi mekanik keseluruhan Suatu tipe neraca energi sangat berguna bagi fluida mengalir dan didapatkan neraca energi total dengan perlakuan seperti energi mekanis. Para insinyur teknik sering berhadapan dengan jenis energi ini yang disebut energi mekanis, yang meliputi kerja energi kinetik, energi potensial dan kerja aliran sebagai bagian dari entalpy. Energi mekanik adalah bentuk lain dari kerja atau suatu bentuk energi yang secara langsung dapat dirubah menjadi kerja. Pertimbangan lain pada persamaan neraca energi, panas dan internal energi, tidak dapat dirubah secara sederhanamenjadi kerja karena Hukum II termodinamika dan efisiensi konversinya, yang tergantung pada temperatur. Pembahasan energi mekanis tidak terbatas dan dapat dikonversi dengan hampir sempurna menjadi kerja. Energi yang dikonversi menjadi panas atau energi dalam merupakan kerja yang hilang atau kehilangan energi mekanik yang disebabkan tekanan gesekan aliran.5) Energi Hilang Gesekan Tidak seperti bentuk-bentuk lainnya yang sangat diperhatikan di titik awal dan akhir suatu sistem, energi hilang gesekan terjadi disepanjang aliran. Energi ini terjadi dari perubahan energi mekanik menjadi energi panas yang tidak dapat diubah kembali menjadi bentuk energi asalnya atau energi lain. Energi hilang gesekan dapat terjadi antar elemen fluida dan antara fluida dengan dinding sepanjang saluran. Energi hilang gesekan disebut skin friction atau frictional resistance. Peranan gesekan antar elemen dan gesekan antara elemen dengan dinding tergantung pada pola aliran. Pada laju alir relatif rendah, gesekan antar elemen (viscous section) sangat berperan. Bila laju alir meningkat, adanya arus gejolak (eddy current) menambah besarnya energi hilang gesekan. Gesekan antara elemen fluida dan dinding pun sangat berperan pada laju alir tinggi. Bila aliran mengalami pemisahan elemen-elemen, maka energi hilang gesekan bertambah besar. Hal ini terjadi misalnya pada belokan, penyempitan maupun pelebaran, kran, sambungan, adanya padatan yang menghalangi aliran dan sebagainya. Besarnya energi hilang gesekan merupakan jumlah dari kedua hal diatas : F = Ffr + Flr(2.13) Dengan Ffr dan Flr masing masing menyatakan energi hilang gesekan karena separation of boundary layers. Besarnya frictional resistance tergantung pada laju alir (energi kinetik), sifat fluida dan sifat permukaan dinding, panjang dan diameter saluran.6) Pompa Daya dan kerja yang dibutuhkan Energi mekanik yang diberikan Ws dalam J/kg yang diberikan ke fluida sering digambarkan sebagai Head pompa dalam m dari fluida yang dipompakan dimana ; -WS = H.g (2.19)Banyak faktor yang menentukan efisiensi aktual dan karakteristik unjuk kerja pompa. Unjuk kerja suatu pompa digambarkan oleh kurva yang disebut kurva karakteristik , biasanya menggunakan fluida air. Head (H) yang dihasilkan akan sama untuk setiap cairan yang memiliki viskositas sama. Pada kebanyakan pompa, kecepatan umumnya bervariasi. Kurva karakteristik untuk pompa sentrifugal tahap tunggal yang bekerja pada kecepatan konstan, kebanyakan laju pompa berbasis pada head dan kapasitas pada titik efisiensi puncak. Efisiensi mencapai puncak pada laju alir kurang lebih 50 galon/menit, sementara bila harga laju alir meningkat head yang dihasilkan akan menurun.7) Sistem perpipaanSudden EnlargmentSuatu sudden enlargment pada daerah alir fluida membesar tiba-tiba sehingga kecepatannya menurun. Saat fluida memasuki pipa besar, suatu pancaran terbentuk disaat fluida terpisah dari dinding tabung kecil. Karena tidak ada dinding pipa yang mengendalikan pancaran fluida yang dihasilkan dari pipa kecil, maka pancaran itu akan berekspansi sehingga mengisi seluruh permukaan. Sebagian kecil fluida terpisah dari pancarannya dan bersirkulasi diantara dinding dan pancaran. Pengaruh pusaran dan expansi fluida sesuai dengan tiga perubahan pada profil kecepatan . Ada8) Sudden Contraction Suatu pengecilan tiba-tiba sering juga disebut reduksi. Fenomena aliran pada kasus kontraksi sangat berbeda dari pada ekspansi. Profil kecepatan adalah profil fluida yang mengalir pada bagian yang besar. Kontraksi menyebabkan fluida berakselerasi saat memasuki daerah yang lebih kecil.9) Fitting dan ValveValve dan fitting dapat meningkatkan penurunan tekanan pada sistem perpipaan aliran fluida bila dibandingkan dengan pipa lurus tanpa valve dan fitting. Bahkan suatu sambungan ynag menggabungkan dua pipa yang panjang, mengganggu profil kecepatan pada aliran turbulen sehingga cukup untuk meningkatkan penurunan tekanan. Ada dua prosedur standar untuk menentukan pressure loss dalam aliran turbulen dengan adanya fitting. Prosedur pertama ialah menggunakan tabel panjang ekivalen, cara kedua dengan menggunakan koofisien kehilangan (k) untuk setiap tipe fitting.10) Alat Ukur FluidaPengukuran fluida merupakan suatu aplikasi penting pada neraca energi. Dasarnya flow meter dirancang untuk menyebabkan penurunan tekanan yang dapat diukur dan dihubungkan dengan laju alir. Penurunan tekanan ini diakibatkan oleh perubahan energi kinetik, oleh gesekan dan lain-lain.11) Manometer karena kebanyakan fluid meter dapat menyebabkan perbedaan tekanan sepanjang bagian pengukuran, suatu alat ukur sederhana dapat digunakan untuk menentukan perbedaan ini. Salah satu alat yang sederhana adalah manometer pipa U.12) Pitot Tube Tabung pitot digunakan untuk mengukur kecepatan lokal pada suatu titik tertentu dalam arus aliran dan bukan kecepatan rata-rata pada pipa. Salah satu tabung, yaitu tabung inpeact, memiliki bukaan yang sejajar terhadap arah aliran dan tabung statif memiliki bukaan paralel terhadap arah aliran. Fluida mengalir kedalam bukaan, terjadilah tekanan dan kemudian menjadi tetap pada disebut titik stagnasi. Perbedaan pada tekanan stagnasi ini dan tekanan statis yang diukur dengan tabung statif menggambarkan kenaikan tekanan dengan deselarasi fluida. Manometer mengukur kenaikan kecil pada tekanan ini. Bila fluida non kompressible, kita dapat menuliskan persamaan Bernoulli antara kecepatan V1 adalah kecepatan sebelum fluida terdeselarasi dan kecepatan V2 adalah 013) Ventury Meter Sebuah ventury meter selalu diletakkan pada perpipaan. Sebuah manometer atau peralatan lain dihubungkan terhadap 2 kran tekanan dan mengukur beda tekanan antara titik 1 dan titik 2. Kecepatan rata-rata pada titik 1 adalah V1 dan diameter d1, dan pada titik 2 kecepatan adalah V2 dan diameter d2. Penyempitan dari d1 ke d2 dan ekspansi balik dari d2 ke d1 berlangsung secara perlahan-lahan. Friction loss yang kecil selama kontraksi dan ekspansi dapat diabaikan.Untuk menurunkan persamaan pada ventury meter, friksi diabaikan dan pipa diasumsikan horizontal. Asumsi aliran turbulen dan persamaan neraca energi mekanik antara titik 1 dan 2 untuk fluida incompressible14) Orifice MeterPada instalasi-instalasi diproses plant penggunaan ventury meter memiliki beberapa kerugian. Ventury memerlukan ruangan yang luas dan juga mahal. Juga diameter throat yang tetap, sehingga laju alir berubah drastis maka pembacaan perbedaan tekanan menjadi tidak akurat. Ventury dapat diganti dengan suatu orifice meter walaupun menimbulkan head loss yang lebih besar. Suatu plat yang memiliki lubang dengan diameter d0 diletakkan diantara dua plat pipa dengan diameter d1. Lubang pengukur tekanan pada titik 1 dan titik 2 akan mengukur P1 P2. Arus fluida melewati plat orifice membentuk suatu vena kontrakta atau arus pancar bebas.

3.2 volume integral1. Usaha Luar Usaha luar dilakukan oleh sistem, jika kalor ditambahkan (dipanaskan) atau kalor dikurangi (didinginkan) terhadap sistem. Jika kalor diterapkan kepada gas yang menyebabkan perubahan volume gas, usaha luar akan dilakukan oleh gas tersebut. Usaha yang dilakukan oleh gas ketika volume berubah dari volume awal V1 menjadi volume akhir V2 pada tekanan p konstan dinyatakan sebagai hasil kali tekanan dengan perubahan volumenya.W = pV= p(V2 V1)Secara umum, usaha dapat dinyatakan sebagai integral tekanan terhadap perubahan volume yang ditulis sebagaiTekanan dan volume dapat diplot dalam grafik p V. jika perubahan tekanan dan volume gas dinyatakan dalam bentuk grafik p V, usaha yang dilakukan gas merupakan luas daerah di bawah grafik p V. hal ini sesuai dengan operasi integral yang ekuivalen dengan luas daerah di bawah grafik.Gas dikatakan melakukan usaha apabila volume gas bertambah besar (atau mengembang) dan V2 > V1. sebaliknya, gas dikatakan menerima usaha (atau usaha dilakukan terhadap gas) apabila volume gas mengecil atau V2 < V1 dan usaha gas bernilai negatif.2. Energi DalamSuatu gas yang berada dalam suhu tertentu dikatakan memiliki energi dalam. Energi dalam gas berkaitan dengan suhu gas tersebut dan merupakan sifat mikroskopik gas tersebut. Meskipun gas tidak melakukan atau menerima usaha, gas tersebut dapat memiliki energi yang tidak tampak tetapi terkandung dalam gas tersebut yang hanya dapat ditinjau secara mikroskopik. Berdasarkan teori kinetik gas, gas terdiri atas partikel-partikel yang berada dalam keadaan gerak yang acak. Gerakan partikel ini disebabkan energi kinetik rata-rata dari seluruh partikel yang bergerak. Energi kinetik ini berkaitan dengan suhu mutlak gas. Jadi, energi dalam dapat ditinjau sebagai jumlah keseluruhan energi kinetik dan potensial yang terkandung dan dimiliki oleh partikel-partikel di dalam gas tersebut dalam skala mikroskopik. Dan, energi dalam gas sebanding dengan suhu mutlak gas. Oleh karena itu, perubahan suhu gas akan menyebabkan perubahan energi dalam gas. Secara matematis, perubahan energi dalam gas dinyatakan sebagai untuk gas monoatomik

untuk gas diatomik

Dimana U adalah perubahan energi dalam gas, n adalah jumlah mol gas, R adalah konstanta umum gas (R = 8,31 J mol1 K1, dan T adalah perubahan suhu gas (dalam kelvin).3. Hukum I TermodinamikaJika kalor diberikan kepada sistem, volume dan suhu sistem akan bertambah (sistem akan terlihat mengembang dan bertambah panas). Sebaliknya, jika kalor diambil dari sistem, volume dan suhu sistem akan berkurang (sistem tampak mengerut dan terasa lebih dingin). Prinsip ini merupakan hukum alam yang penting dan salah satu bentuk dari hukum kekekalan energi. Sistem yang mengalami perubahan volume akan melakukan usaha dan sistem yang mengalami perubahan suhu akan mengalami perubahan energi dalam. Jadi, kalor yang diberikan kepada sistem akan menyebabkan sistem melakukan usaha dan mengalami perubahan energi dalam. Prinsip ini dikenal sebagai hukum kekekalan energi dalam termodinamika atau disebut hukum I termodinamika. Secara matematis, hukum I termodinamika dituliskan sebagaiQ = W + UDimana Q adalah kalor, W adalah usaha, dan U adalah perubahan energi dalam. Secara sederhana, hukum I termodinamika dapat dinyatakan sebagai berikut.Jika suatu benda (misalnya krupuk) dipanaskan (atau digoreng) yang berarti diberi kalor Q, benda (krupuk) akan mengembang atau bertambah volumenya yang berarti melakukan usaha W dan benda (krupuk) akan bertambah panas (coba aja dipegang, pasti panas deh!) yang berarti mengalami perubahan energi dalam U.4. Proses IsotermikSuatu sistem dapat mengalami proses termodinamika dimana terjadi perubahan-perubahan di dalam sistem tersebut. Jika proses yang terjadi berlangsung dalam suhu konstan, proses ini dinamakan proses isotermik. Karena berlangsung dalam suhu konstan, tidak terjadi perubahan energi dalam (U = 0) dan berdasarkan hukum I termodinamika kalor yang diberikan sama dengan usaha yang dilakukan sistem (Q = W).Proses isotermik dapat digambarkan dalam grafik p V di bawah ini. Usaha yang dilakukan sistem dan kalor dapat dinyatakan sebagaiDimana V2 dan V1 adalah volume akhir dan awal gas.

5. Proses IsokhorikJika gas melakukan proses termodinamika dalam volume yang konstan, gas dikatakan melakukan proses isokhorik. Karena gas berada dalam volume konstan (V = 0), gas tidak melakukan usaha (W = 0) dan kalor yang diberikan sama dengan perubahan energi dalamnya. Kalor di sini dapat dinyatakan sebagai kalor gas pada volume konstan QV.QV = U 6. Proses IsobarikJika gas melakukan proses termodinamika dengan menjaga tekanan tetap konstan, gas dikatakan melakukan proses isobarik. Karena gas berada dalam tekanan konstan, gas melakukan usaha (W = pV). Kalor di sini dapat dinyatakan sebagai kalor gas pada tekanan konstan Qp. Berdasarkan hukum I termodinamika, pada proses isobarik berlakuSebelumnya telah dituliskan bahwa perubahan energi dalam sama dengan kalor yang diserap gas pada volume konstanQV =U Dari sini usaha gas dapat dinyatakan sebagaiW = Qp QVJadi, usaha yang dilakukan oleh gas (W) dapat dinyatakan sebagai selisih energi (kalor) yang diserap gas pada tekanan konstan (Qp) dengan energi (kalor) yang diserap gas pada volume konstan (QV).

7. Proses AdiabatikDalam proses adiabatik tidak ada kalor yang masuk (diserap) ataupun keluar (dilepaskan) oleh sistem (Q = 0). Dengan demikian, usaha yang dilakukan gas sama dengan perubahan energi dalamnya (W = U).Jika suatu sistem berisi gas yang mula-mula mempunyai tekanan dan volume masing-masing p1 dan V1 mengalami proses adiabatik sehingga tekanan dan volume gas berubah menjadi p2 dan V2, usaha yang dilakukan gas dapat dinyatakan sebagaiDimana adalah konstanta yang diperoleh perbandingan kapasitas kalor molar gas pada tekanan dan volume konstan dan mempunyai nilai yang lebih besar dari 1 ( > 1).

Proses adiabatik dapat digambarkan dalam grafik p V dengan bentuk kurva yang mirip dengan grafik p V pada proses isotermik namun dengan kelengkungan yang lebih curam.3.4 Energy systemSistem termodinamika adalah bagian dari jagat raya yang diperhitungkan. Sebuah batasan yang nyata atau imajinasi memisahkan sistem dengan jagat raya, yang disebut lingkungan. Klasifikasi sistem termodinamika berdasarkan pada sifat batas sistem-lingkungan dan perpindahan materi, kalor dan entropi antara sistem dan lingkungan.Ada tiga jenis sistem berdasarkan jenis pertukaran yang terjadi antara sistem dan lingkungan: sistem terisolasi: tak terjadi pertukaran panas, benda atau kerja dengan lingkungan. Contoh dari sistem terisolasi adalah wadah terisolasi, seperti tabung gas terisolasi. sistem tertutup: terjadi pertukaran energi (panas dan kerja) tetapi tidak terjadi pertukaran benda dengan lingkungan. Rumah hijau adalah contoh dari sistem tertutup di mana terjadi pertukaran panas tetapi tidak terjadi pertukaran kerja dengan lingkungan. Apakah suatu sistem terjadi pertukaran panas, kerja atau keduanya biasanya dipertimbangkanh sebagai sifat pembatasnya: pembatas adiabatik: tidak memperbolehkan pertukaran panas. pembatas rigid: tidak memperbolehkan pertukaran kerja. sistem terbuka: terjadi pertukaran energi (panas dan kerja) dan benda dengan lingkungannya. Sebuah pembatas memperbolehkan pertukaran benda disebut permeabel. Samudra merupakan contoh dari sistem terbuka.Dalam kenyataan, sebuah sistem tidak dapat terisolasi sepenuhnya dari lingkungan, karena pasti ada terjadi sedikit pencampuran, meskipun hanya penerimaan sedikit penarikan gravitasi. Dalam analisis sistem terisolasi, energi yang masuk ke sistem sama dengan energi yang keluar dari sistem.

Ketika sistem dalam keadaan seimbang dalam kondisi yang ditentukan, ini disebut dalam keadaan pasti (atau keadaan sistem).Untuk keadaan termodinamika tertentu, banyak sifat dari sistem dispesifikasikan. Properti yang tidak tergantung dengan jalur di mana sistem itu membentuk keadaan tersebut, disebut fungsi keadaan dari sistem. Bagian selanjutnya dalam seksi ini hanya mempertimbangkan properti, yang merupakan fungsi keadaan.Jumlah properti minimal yang harus dispesifikasikan untuk menjelaskan keadaan dari sistem tertentu ditentukan oleh Hukum fase Gibbs. Biasanya seseorang berhadapan dengan properti sistem yang lebih besar, dari jumlah minimal tersebut.Pengembangan hubungan antara properti dari keadaan yang berlainan dimungkinkan. Persamaan keadaan adalah contoh dari hubungan tersebut.Terdapat empat Hukum Dasar yang berlaku di dalam sistem termodinamika, yaitu: Hukum Awal (Zeroth Law) TermodinamikaHukum ini menyatakan bahwa dua sistem dalam keadaan setimbang dengan sistem ketiga, maka ketiganya dalam saling setimbang satu dengan lainnya. Hukum Pertama TermodinamikaHukum ini terkait dengan kekekalan energi. Hukum ini menyatakan perubahan energi dalam dari suatu sistem termodinamika tertutup sama dengan total dari jumlah energi kalor yang disuplai ke dalam sistem dan kerja yang dilakukan terhadap sistem. Hukum kedua TermodinamikaHukum kedua termodinamika terkait dengan entropi. Tidak ada bunyi untuk hukum kedua termodinamika yang ada hanyalah pernyataan kenyataan eksperimental yang dikeluarkan oleh kelvin-plank dan clausius. Pernyataan clausius: tidak mungkin suatu sistem apapun bekerja sedemikian rupa sehingga hasil satu-satunya adalah perpindahan energi sebagai panas dari sistem dengan temperatur tertentu ke sistem dengan temperatur yang lebih tinggi. Pernyataan kelvin-planck: tidak mungkin suatu sistem beroperasi dalam siklus termodinamika dan memberikan sejumlah netto kerja kesekeliling sambil menerima energi panas dari satu reservoir termal.(sumber Fundamentals of engineering thermodynamics (Moran J., Shapiro N.M. - 6th ed. - 2007 - Wiley) Bab5). "total entropi dari suatu sistem termodinamika terisolasi cenderung untuk meningkat seiring dengan meningkatnya waktu, mendekati nilai maksimumnya hal ini disebut dengan prinsip kenaikan entropi" merupakan korolari dari kedua pernyataan diatas (analisis Hukum kedua termodinamika untuk proses dengan menggunakan sifat entropi)(sumber Fundamentals of engineering thermodynamics (Moran J., Shapiro N.M. - 6th ed. - 2007 - Wiley) Bab6). Hukum ketiga TermodinamikaHukum ketiga termodinamika terkait dengan temperatur nol absolut. Hukum ini menyatakan bahwa pada saat suatu sistem mencapai temperatur nol absolut, semua proses akan berhenti dan entropi sistem akan mendekati nilai minimum. Hukum ini juga menyatakan bahwa entropi benda berstruktur kristal sempurna pada temperatur nol absolut bernilai nol.

3.6 Nozzle Nozzle adalah alat untuk mengekspansikan fluida sehingga kecepatannya bertambah. Sebuah nozzle exhaust dapat dianggap sebagai perangkat membagi daya yang tersedia dari kompor gas keluar utama antara kebutuhan turbin dan kekuatan jet. Jadi nosel berfungsi sebagai backpressure kontrol untuk mesin dan perangkat percepatan konversi energi gas panas menjadi energi kinetik. Fungsi sekunder dari nozzle ini adalah untuk memberikan dorongan yang pada bagian ini terjadi proses pembakaran antara bahan bakar dengan fluida kerja yang berupa udara bertekanan tinggi dan bersuhu tinggi. Hasil pembakaran ini berupa energi panas yang diubah menjadi energi kinetik dengan mengarahkan udara panas tersebut ke bagian pengubah yang juga berfungsi sebagai nozzle. Fungsi dari keseluruhan sistem adalah untuk mensuplai energi panas ke siklus turbin (V Ganesan, 2003).

3.8 Expansion processEkspansi adalah proses yang menyebabkan volume menjadi besar dan menimbukan perubahan suhu dan tekanan yang semakin kecil.U = Q + Wenergi sekeliling = Q Wenergi system = U + Ek + EpDitinjau dari perpindahan dari dan ke dalam sistem, proses ekspansi dibagi menjadi dua yaitu : 1. Ekspansi adiabatik, yaitu apabila tidak ada panas yang melewati sistem dan kerja yang diterima oleh sistem digunakan seluruhnya untuk mengubah energi di dalam sistem.2. Ekspansi non-adiabatik, yaitu apabila ada panas yang pindah melewati sistem tersebut dan kerja yang diterima oleh sistem sebagian di ubah dalam bentuk panas yang keluar melalui batas sistem, dengan rumus : E = q W Bila ditinjau siklus Carnot, yakni siklus hipotesis yang terdiri dari empat proses terbalikkan: pemuaian isotermal dengan penambahan kalor, pemuaian adiabatik, pemampatan isotermal dengan pelepasan kalor dan pemampatan adiabatik; jika integral sebuah kuantitas mengitari setiap lintasan tertutup adalah nol, maka kuantitas tersebut yakni variabel keadaan, mempunyai sebuah nilai yang hanya merupakan ciri dari keadaan sistem tersebut, tak peduli bagaimana keadaan tersebut dicapai. Variabel keadaan dalam hal ini adalah entropi. Perubahan entropi hanya gayut keadaan awal dan keadaan akhir dan tak gayut proses yang menghubungkan keadaan awal dan keadaan akhir sistem tersebut. Hukum kedua termodinamika dalam konsep entropi mengatakan, "Sebuah proses alami yang bermula di dalam satu keadaan kesetimbangan dan berakhir di dalam satu keadaan kesetimbangan lain akan bergerak di dalam arah yang menyebabkan entropi dari sistem dan lingkungannya semakin besar". Jika entropi diasosiasikan dengan kekacauan maka pernyataan hukum kedua termodinamika di dalam proses-proses alami cenderung bertambah ekivalen dengan menyatakan, kekacauan dari sistem dan lingkungan cenderung semakin besar. Di dalam ekspansi bebas, molekul-molekul gas yang menempati keseluruhan ruang kotak adalah lebih kacau dibandingkan bila molekul-molekul gas tersebut menempati setengah ruang kotak. Jika dua benda yang memiliki temperatur berbeda T1 dan T2 berinteraksi, sehingga mencapai temperatur yang serba sama T, maka dapat dikatakan bahwa sistem tersebut menjadi lebih kacau, dalam arti, pernyataan "semua molekul dalam sistem tersebut bersesuaian dengan temperatur T adalah lebih lemah bila dibandingkan dengan pernyataan semua molekul di dalam benda A bersesuaian dengan temperatur T1 dan benda B bersesuaian dengan temperatur T2". Di dalam mekanika statistik, hubungan antara entropi dan parameter kekacauan adalah, pers. (1): S = k log w dimana k adalah konstanta Boltzmann, S adalah entropi sistem, w adalah parameter kekacauan, yakni kemungkinan beradanya sistem tersebut relatif terhadap semua keadaan yang mungkin ditempati. Jika ditinjau perubahan entropi suatu gas ideal di dalam ekspansi isotermal, dimana banyaknya molekul dan temperatur tak berubah sedangkan volumenya semakin besar, maka kemungkinan sebuah molekul dapat ditemukan dalam suatu daerah bervolume V adalah sebanding dengan V; yakni semakin besar V maka semakin besar pula peluang untuk menemukan molekul tersebut di dalam V. Kemungkinan untuk menemukan sebuah molekul tunggal di dalam V adalah, pers. (2): W1 = c V dimana c adalah konstanta. Kemungkinan menemukan N molekul secara serempak di dalam volume V adalah hasil kali lipat N dari w. Yakni, kemungkinan dari sebuah keadaan yang terdiri dari N molekul berada di dalam volume V adalah, pers.(3): w = w1N = (cV)N. Jika persamaan (3) disubstitusikan ke (1), maka perbedaan entropi gas ideal dalam proses ekspansi isotermal dimana temperatur dan banyaknya molekul tak berubah, adalah bernilai positip. Ini berarti entropi gas ideal dalam proses ekspansi isotermal tersebut bertambah besar. Definisi statistik mengenai entropi, yakni persamaan (1), menghubungkan gambaran termodinamika dan gambaran mekanika statistik yang memungkinkan untuk meletakkan hukum kedua termodinamika pada landasan statistik. Arah dimana proses alami akan terjadi menuju entropi yang lebih tinggi ditentukan oleh hukum kemungkinan, yakni menuju sebuah keadaan yang lebih mungkin. Dalam hal ini, keadaan kesetimbangan adalah keadaan dimana entropi maksimum secara termodinamika dan keadaan yang paling mungkin secara statistik. Akan tetapi fluktuasi, misal gerak Brown, dapat terjadi di sekitar distribusi kesetimbangan. Dari sudut pandang ini, tidaklah mutlak bahwa entropi akan semakin besar di dalam tiap-tiap proses spontan. Entropi kadang-kadang dapat berkurang. Jika cukup lama ditunggu, keadaan yang paling tidak mungkin sekali pun dapat terjadi: air di dalam kolam tiba-tiba membeku pada suatu hari musim panas yang panas atau suatu vakum setempat terjadi secara tiba-tiba dalam suatu ruangan. Hukum kedua termodinamika memperlihatkan arah peristiwa-peristiwa yang paling mungkin, bukan hanya peristiwa-peristiwa yang mungkin.