prof p mahanta

41
Heat Transfer Characteristics in Cyclone Separator of a Circulating Fluidized Bed Unit DR. P. MAHANTA IIT GUWAHATI

Upload: mukut-das

Post on 04-Jun-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

8/13/2019 Prof P Mahanta

http://slidepdf.com/reader/full/prof-p-mahanta 1/41

Heat Transfer Characteristicsin Cyclone Separator of a

Circulating Fluidized BedUnit

DR. P. MAHANTA

IIT GUWAHATI

8/13/2019 Prof P Mahanta

http://slidepdf.com/reader/full/prof-p-mahanta 2/41

2

 

CFB- A novel and

more efficientcombustiontechnology for low

grade fuelsOffers wide fuel

flexibility, lowenvironmental

pollution, highavailability

8/13/2019 Prof P Mahanta

http://slidepdf.com/reader/full/prof-p-mahanta 3/41

3

Core-annulus structure Voidage variation

8/13/2019 Prof P Mahanta

http://slidepdf.com/reader/full/prof-p-mahanta 4/41

4

In CFB the bed materialsare entrained in the gasstream to form a refluxing

suspension

Intense gas-solids mixing

and good-solids contactcreate an isothermal system

DETAILS OF A TYPICAL

CFB BOILER

 

8/13/2019 Prof P Mahanta

http://slidepdf.com/reader/full/prof-p-mahanta 5/41

5

Staged combustion

Coal occupies 5 to 10%

of the bed volume

Bed material stores up

energy

STAGED COMBUSTION

8/13/2019 Prof P Mahanta

http://slidepdf.com/reader/full/prof-p-mahanta 6/41

6

Fuel flexibility

Bed materials acts as a large thermal flywheel

High heat release rate

Efficient sulphur removal

S + O2 So2+ 9260 kJ/kg.

Caco3

Cao + co2

- 1830 kJ/kg. Caco3

Cao + So2 + ½ O2 Caso4 + 15,141 kJ.

Low Nox emission

 

8/13/2019 Prof P Mahanta

http://slidepdf.com/reader/full/prof-p-mahanta 7/41

8/13/2019 Prof P Mahanta

http://slidepdf.com/reader/full/prof-p-mahanta 8/41

8/13/2019 Prof P Mahanta

http://slidepdf.com/reader/full/prof-p-mahanta 9/41

9

In the upper splash region of CFB dueto fully developed gas-solid flow bettersolid-gas contacting takes place

Low solid concentration on upper splashregion reduces the erosion problem on

heat exchanging surfaces

8/13/2019 Prof P Mahanta

http://slidepdf.com/reader/full/prof-p-mahanta 10/41

10

!"

Heat transfer to the walls of a CFB is due to the conduction fromclusters of particles falling along the wall, thermal radiation andconvection to uncovered surface area .

Fraction of the wall coverage by particles and the average

contact time of particles to the wall .

h = hpc + hgc + hrad

= (1- fo) hpc + fo hgc + hrad

Where fo : fraction of surface covered by gas bubbles.

dq = h (TB - TW) dA

8/13/2019 Prof P Mahanta

http://slidepdf.com/reader/full/prof-p-mahanta 11/41

11

Details of Set-up developed

8/13/2019 Prof P Mahanta

http://slidepdf.com/reader/full/prof-p-mahanta 12/41

12

8/13/2019 Prof P Mahanta

http://slidepdf.com/reader/full/prof-p-mahanta 13/41

13

# $

Details of Heat Transfer Probe

8/13/2019 Prof P Mahanta

http://slidepdf.com/reader/full/prof-p-mahanta 14/41

14

%

8/13/2019 Prof P Mahanta

http://slidepdf.com/reader/full/prof-p-mahanta 15/41

15

U-Tube Manometers

Dimensions:

Height= 120 cmWidth=92 cm

No. of Tubes=16

Pitch= 4 cm

8/13/2019 Prof P Mahanta

http://slidepdf.com/reader/full/prof-p-mahanta 16/41

16

  !"

8/13/2019 Prof P Mahanta

http://slidepdf.com/reader/full/prof-p-mahanta 17/41

17

& !"

8/13/2019 Prof P Mahanta

http://slidepdf.com/reader/full/prof-p-mahanta 18/41

18

!" '

8/13/2019 Prof P Mahanta

http://slidepdf.com/reader/full/prof-p-mahanta 19/41

19

Temperature measurement on

upper splash region

8/13/2019 Prof P Mahanta

http://slidepdf.com/reader/full/prof-p-mahanta 20/41

20

Temperature Measurement on Upper Splash region

8/13/2019 Prof P Mahanta

http://slidepdf.com/reader/full/prof-p-mahanta 21/41

21

!" ! (

8/13/2019 Prof P Mahanta

http://slidepdf.com/reader/full/prof-p-mahanta 22/41

22

Experimental conditions

• Bed Material: Sand

• Mean particle size of sand: 271 µµµµm

• Fluidizing velocity : 2.9–4.6 m/s

• Solid circulation rate : 4-20 kg/m2s• Heat fluxes :

849.673 W/m2

1593.137 W/m2

Bed inventories:10 kg to 16 kg.

8/13/2019 Prof P Mahanta

http://slidepdf.com/reader/full/prof-p-mahanta 23/41

23

Working Formulae

• Voidage ( )

∆∆∆∆Pb = (1- εεεεmf). Lmf . (ρρρρs -   ρρρρg ) . g

ε 

gh

 p W  L

b   .)

100

(   ρ ∆

=∆

 L

 L

h

 ρ .

.10 ∆ε =1-

: Difference of height in manometer

fluid, Cm of water. Lh∆

Experimental Set-Up and Procedures Contd..

8/13/2019 Prof P Mahanta

http://slidepdf.com/reader/full/prof-p-mahanta 24/41

24

&%

gssus   ρ ε ε  ρ  ρ    .)1(.   +−=

Superficial Velocity

 psm

 p

∆=

72.1 / 0104.0

0179.0

Uo = m/sSolid Circulation Rate

 L mf as   )1(   ε  ρ    −

=sG

La : Accumulation height, m

8/13/2019 Prof P Mahanta

http://slidepdf.com/reader/full/prof-p-mahanta 25/41

25

Measurement of Mean Particle Size of Sand

1

1

__ 1

 X d   p

=

X1 : weight fraction of solids of diameter d1

8/13/2019 Prof P Mahanta

http://slidepdf.com/reader/full/prof-p-mahanta 26/41

26

 ))$

qh

=  "

)(  BS ht    T T  A

VI h

−=

Aht : Area of heat exchanging surface.

TB:Bed temperature

Ts: surface temperature.

8/13/2019 Prof P Mahanta

http://slidepdf.com/reader/full/prof-p-mahanta 27/41

27

Stage – 1Stage – 2 

Stage – 3

Stage – 4 Stage – 5

Stage – 6

Hydrodynamic Behavior 

8/13/2019 Prof P Mahanta

http://slidepdf.com/reader/full/prof-p-mahanta 28/41

28

Axial voidage distribution

linear for low operatingconditions

decreases along the

cyclone heightincreases for higher

gas velocities

Voidage variations along the

cyclone height

Heat Transfer and Hydrodynamic Study in Cyclone

+

I = 16 kg

Distance from the inlet of cyclone , m

   V  o   i   d  a  g  e   f  r  a  c   t   i  o  n

q" = 771.895 w/m2

Uo = 4.496 m/s

Uo = 3.881 m/s

Uo = 2.986 m/s

0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

8/13/2019 Prof P Mahanta

http://slidepdf.com/reader/full/prof-p-mahanta 29/41

29

I=10 kg

I=16 kg

Voidage variations along the cyclone height

Axial voidage distribution contd…

+

Distance from the inlet of cyclone , m

   V  o   i   d  a  g  e   f  r  a  c   t   i  o  n

Uo = 4.429 m/s, Gs = 15.97 kg/m2s

I = 10 kg q" = 771.892 w/m2

Uo = 3.08 m/s, Gs=5.57 kg/m2s

Uo = 3.875 m/s, Gs =10.59 kg/m2s

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

+

I = 16 kg

Distance from the inlet of cyclone , m

   V  o   i   d  a  g  e   f  r  a  c   t   i  o  n

q" = 771.895 w/m2

Uo = 4.496 m/s

Uo = 3.881 m/s

Uo = 2.986 m/s

0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

8/13/2019 Prof P Mahanta

http://slidepdf.com/reader/full/prof-p-mahanta 30/41

30

%

Uo = 3.875 m/s

Uo = 4.429 m/s

Uo = 3.084 m/s

I = 10 kg q" = 771.895 w/m2

Distance from the inlet of cyclone , m

   S  u  s  p  e  n  s   i  o

  n   d  e  n  s   i   t  y ,

   k  g   /  m   3

−100

−50

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

I=10 kg

I=16 kg

Suspension density variations along the cyclone height

   S  u  s  p  e  n  s   i  o  n   d  e  n  s   i   t  y ,

   k  g   /  m   3

Distance from the inlet of cyclone , m

2I = 16 kg q" = 771.895 w/m

Uo = 2.986 m/s

Uo = 3.881 m/s

Uo = 4.496 m/s

−200

−100

 0

 100

 200

 300

 400

 500

 600

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

8/13/2019 Prof P Mahanta

http://slidepdf.com/reader/full/prof-p-mahanta 31/41

31

 * $

Variations of local heat transfer coefficient along the

cyclone separator height

I=10 kg

s

2

2

s

Distance from the inlet of cyclone, m

I = 10 kg

        2        k

   L  o  c  a   l   h  e  a   t   t  r  a  n  s   f  e  r  c  o  e   f   f   i  c   i  e  n   t ,  w   /  m

q" = 771.895 w/m

Uo = 3.875 m/sUo = 4.429 m/s

U o = 3.084 m/s

 250

 255

 260

 265 270

 275

 280

 285

 290

 295

 300

 305

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

8/13/2019 Prof P Mahanta

http://slidepdf.com/reader/full/prof-p-mahanta 32/41

32

q" = 411.68 w/m2, Gs = 20.48 kg/m2s

q" = 771.985 w/m2, Gs = 20.53 kg/m2s+

   L  o  c

  a   l   h  e  a   t   t  r  a  n  s

   f  e  r  c  o  e   f   f   i  c   i  e  n

   t ,  w   /  m   2   k

Distance from the inlet of cyclone , m

I = 16 kg Uo = 4.496 m/s

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Variations of local heat transfer coefficient along the cyclone heightfor different heat flux conditions

8/13/2019 Prof P Mahanta

http://slidepdf.com/reader/full/prof-p-mahanta 33/41

33

' $

Uo = 3.084 m/s

Uo = 3.875 m/s

Uo = 4.429 m/s

Non−dimensional distance across the cyclone width

        k        2

   L  o  c  a

   l   h  e  a   t   t  r  a  n  s   f  e  r  c   f   f   i  c   i  e  n   t ,  w   /

  m

 I=10 kg, q"= 771.895 w/m2

 292

 293

 294

 295

 296

 297

 298

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H=0.50 m

Radial distributions of heat transfer coefficient

I=10 kg

8/13/2019 Prof P Mahanta

http://slidepdf.com/reader/full/prof-p-mahanta 34/41

34

Uo = 3.084 m/s

Uo = 3.875 m/s

Uo = 4.429 m/s

Non−dimensional distance across the cyclone width

         k

         2

   L   o   c   a   l   h   e   a   t   t   r   a

   n   s   f   e   r   c   f   f   i   c   i   e   n   t ,   w   /   m

 I=10 kg, q"= 771.895 w/m2

 292

 293

 294

 295

 296

 297

 298

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 I = 13 kg q" = 771.895 w/m2h = 0.50 m

Uo = 3.132 m/s, Gs = 8.23 kg/m2s

Uo = 3.913 m/s, Gs = 10.96 kg/m2s

Uo = 4.562 m/s, Gs = 18.03 kg/m2s

   o   c   a 

   e   a   t   t   r   a   n   s

   e   r   c   o   e

   c   e   n   t ,   w   m

Non−dimensional distance across the cyclone width

 293

 294

 295

 296

 297

 298

 299

 300

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

I=10 kg

I=13 kg

H=0.50 m

' $ ++

Radial distributions of heat transfer coefficient

H=0.50 m

8/13/2019 Prof P Mahanta

http://slidepdf.com/reader/full/prof-p-mahanta 35/41

35

h = 0.10

h = 0.30

   L  o  c  a   l   h  e  a   t   t  r  a  n  s   f  e  r  c  o  e   f   f   i  c   i  e  n   t ,  w   /  m   2   k

Non−dimensional distance across the cyclone width

I = 16 kg Uo = 4.562 m/s, Gs = 18.98 kg/m2s q" = 411.68 w/m2

h = 0.50

120

 130

 140

 150

 160

 170

 180

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

' $ ++

Radial distributions of heat transfer coefficient

H=0.10 m

H=0.30 m

H=0.50 m

8/13/2019 Prof P Mahanta

http://slidepdf.com/reader/full/prof-p-mahanta 36/41

36

m

 I = 13 kg

 I = 16 kg

 I = 10 kg

   L  o  c  a   l   h  e  a   t   t  r  a  n  s   f  e  r  c  o  e   f   f   i  c   i  e  n   t ,  w   /  m   2   k

Non−dimensional distance across the cyclone width

h = 0.10 Uo = 4.429 m/s − 4.562 m/s q" = 411.68 w/m2

 122

 123

 124

 125

 126

 127

 128

 129

 130

 131

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

' $ ++

Radial distributions of heat transfer coefficient

I=10 kg

I=13 kg

I=16 kg

8/13/2019 Prof P Mahanta

http://slidepdf.com/reader/full/prof-p-mahanta 37/41

37

, %

I = 16 kgI = 13 kgI = 10 kg

       2

       k

2

Gas superficial velocity, m/s

q" = 411.68 w/m

   A  v  e

  r  a  g  e   h  e  a   t   t  r  a  n

  s   f  e  r  c  o  e   f   f   i  c   i  e  n   t ,  w   /  m

 142

 144

 146

 148

 150

 152

 154

 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6

Variation of average heat transfer coefficient with gas superficial velocity

I=13 kg

I=16 kg

I=10 kg

8/13/2019 Prof P Mahanta

http://slidepdf.com/reader/full/prof-p-mahanta 38/41

38

Suspension density profile

Uo = 4.429 m/s, Gs = 14.42 kg/m2sUo = 3.875 m/s, Gs = 6.23 kg/m2s

Uo = 3.084 m/s, Gs = 4.05 kg/m2s

Height above the distributor plate, m

I = 10 kg

   S  u  s  p  e  n  s

   i  o  n   d  e  n  s   i   t  y ,

   k  g   /  m

q" = 1593.137 w/m2         3

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 0.8 1 1.2 1.4 1.6 1.8 2 2.2

Suspension density variations along the cyclone height

C l i

8/13/2019 Prof P Mahanta

http://slidepdf.com/reader/full/prof-p-mahanta 39/41

39

Conclusion

The axial and radial distribution profiles of theheat transfer coefficient in the cyclone separatorand are consistent with the corresponding solids

concentration

The heat transfer coefficient in the cyclone isfound to be increasing with increase in the solid

loading as well as gas superficial velocity

At a certain distance from the entry of thecyclone downstream along the height, the local

heat transfer coefficient is found to be maximum

8/13/2019 Prof P Mahanta

http://slidepdf.com/reader/full/prof-p-mahanta 40/41

40

Conclusion contd…

On the upper splash zone of riser an increasing-

decreasing trend of local heat transfer coefficientHeat transfer coefficient increases with solidcirculation rate

The heat transfer coefficient generally increases

with the solids holdup, but their relationshipexperiences different trends under the differentoperating conditions and at different cyclone and

riser locations

8/13/2019 Prof P Mahanta

http://slidepdf.com/reader/full/prof-p-mahanta 41/41

41